Accepted Manuscript

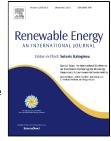
An Improved, Generalized Effective Thermal Conductivity Method for Rapid Design of High Temperature Shell-and-Tube Latent Heat Thermal Energy Storage Systems

S. Saeed Mostafavi Tehrani, Yashar Shoraka, Gonzalo Diarce, Robert A. Taylor

PII: S0960-1481(18)30988-1

DOI: 10.1016/j.renene.2018.08.038

Reference: RENE 10465


To appear in: Renewable Energy

Received Date: 23 January 2018

Accepted Date: 11 August 2018

Please cite this article as: S. Saeed Mostafavi Tehrani, Yashar Shoraka, Gonzalo Diarce, Robert A. Taylor, An Improved, Generalized Effective Thermal Conductivity Method for Rapid Design of High Temperature Shell-and-Tube Latent Heat Thermal Energy Storage Systems, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.08.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	An Improved, Generalized Effective Thermal Conductivity Method
2	for Rapid Design of High Temperature Shell-and-Tube Latent Heat
3	Thermal Energy Storage Systems
4	
5	S. Saeed Mostafavi Tehrani ¹ , Yashar Shoraka ² , Gonzalo Diarce ³ , Robert A.
6	Taylor ⁴
7	1, 2, 4 School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
8	s.mostafavi.tehrani@gmail.com ¹ , yshoraka@gmail.com ² , robert.taylor@unsw.edu.au ⁴
9	³ ENEDI Research Group, Dpto. de Ingeniería Minera, Metalúrgica y Ciencia de los Materiales, Escuela de Ingeniería de
10	Bilbao, University of the Basque Country UPV/EHU, Rafael Moreno Pitxitxi 2, Bilbao 48013, Spain; gonzalo.diarce@ehu.es
11	Abstract
12	To avoid full — expensive — computational fluid dynamic (CFD) simulations, latent
13	heat thermal energy storage (LHTES) systems are often modelled by incorporating
14	natural convection Nusselt correlations. This enables fast, coarse optimizations for
15	phase change materials (PCMs) selection and geometrical design. While this approach
16	is very convenient and often works well, it is frequently invoked in an ad-hoc manner
17	— outside of known limits. To broaden the limits of applicability for this approach, this
18	study develops natural convection Nusselt correlations for high temperature shell-and-
19	tube LHTES systems, which are under development for concentrated solar power (CSP)
20	plants. In these systems there is a large gap between PCM melting point and heat
21	transfer fluid, up to 280 °C, which drives melting process. To date, many correlations
22	that have been developed (for low temperature PCMs) in the literature are only suitable
23	for a specific geometry and/or PCM. Therefore, this study also expands on the literature
24	by providing correlations that are appropriate for a wide range of realistic geometric
25	parameters and high temperature PCMs. These new natural convection Nusselt
26	correlations were obtained by comparing the heat transfer rates in conduction only and
27	combined conduction/convection CFD models for several PCMs and geometries in the

1

Download English Version:

https://daneshyari.com/en/article/11001180

Download Persian Version:

https://daneshyari.com/article/11001180

Daneshyari.com