Accepted Manuscript

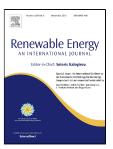
PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation

A. Allouhi, M.S. Buker, H. El-houari, A. Boharb, M. Benzakour Amine, T. Kousksou, A. Jamil

PII: S0960-1481(18)30969-8

DOI: 10.1016/j.renene.2018.08.019

Reference: RENE 10446


To appear in: Renewable Energy

Received Date: 26 January 2018

Accepted Date: 06 August 2018

Please cite this article as: A. Allouhi, M.S. Buker, H. El-houari, A. Boharb, M. Benzakour Amine, T. Kousksou, A. Jamil, PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.08.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	PV water pumping systems for domestic uses in remote areas: Sizing process, simulation
2	and economic evaluation
3	A. Allouhi ^(a) , M.S. Buker ^(b) , H. El-houari ^(a,c) , A. Boharb ^(a) , M. Benzakour Amine ^(d) , T.
4	Kousksou ^(e) , A. Jamil ^(a)
5	(a) Ecole Supérieure de Technologie de Fès, U.S.M.B.A, Route d'Imouzzer, BP 242, Fez,
6	Morocco
7	(b) Department of Aeronautical Engineering, Konya NEU University, Konya, Turkey
8	(c) Ecole Normale Supérieure Fès de Fès, U.S.M.B.A, Route Bensouda, BP. 5206, Fez, Morocco
9	(d) Faculté des Sciences d'El Jadida, Université Chouaib Doukkali, 24000, El Jadida, Morocco
LO	(e) Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au Génie Electrique
l1	(SIAME), Université de Pau et des Pays de l'Adour – IFR – A. Jules Ferry, 64000 Pau, France
12	Abstract
13	PV water pumping technology is recognized as a sustainable and environmentally friendly
L4 	solution to provide water for domestic use. The appropriate design and smooth operation
L5	mostly rely on available solar irradiation, domestic water demand and appropriate
L6	configuration of the proposed system. Therefore, the aim of this work is to examine an
L7	optimum PV system configuration that is capable of supplying a solar submersible pump
L8	system to fulfill domestic water needs of five isolated houses located in a Moroccan remote
L9	area. A detailed approach for the design of an optimized PV water pumping system based on
20	real water usage data is proposed. Besides, system design work and performance assessment
21	were carried out based on hourly climatic conditions. Overall, two approaches were
22	investigated for an optimum design of the proposed system. Annual simulations indicated
23	that the direct coupling, as a first option, appears to be unfitting configuration for water
24	pumping in this case. In turn, results proved that second system including a MPPT DC
25	converter with less PV arrays could pump more water and its performance remarkably
26	surpassed the direct coupling configuration. In addition, economic analysis has shown that
27	proposed systems are cost competitive against the conventional water supply methods.
28	Keywords:

Photovoltaic; water pumping; design; regulation; simulation; economic analysis

29

Download English Version:

https://daneshyari.com/en/article/11001187

Download Persian Version:

https://daneshyari.com/article/11001187

<u>Daneshyari.com</u>