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a b s t r a c t

Wind power develops very quickly in last decade to overcome the energy crisis and environment crisis.
Mechanical components of wind turbines usually have characteristic with performance degradation that
results in the declining reliability over time. Generally, the reliability data of equipment come from
statistical analysis based on extensive experiments and operations. However, wind turbines, as expensive
large-scale equipment with long lifetime, face with the dilemma of lacking enough statistical data, and
leads to insufficiency reliability data for field operations and thus results in frequent wind turbine faults.
A new reliability assessment method based on Hidden-Markov model considering performance degra-
dation, called degradation-Hidden-Markov model, is proposed in this paper. The performance degra-
dation rule of wind turbine component is derived using the monitoring data of performance parameters.
Hidden-Markov model is improved by the performance degradation rule of the component to create a
new time-correlated state transition probability matrix with degradation feature. The reliability curve is
obtained using the state probabilities of the degradation-Hidden-Markov model. Thus, the presented
method realizes the reliability assessment of component based on small sample data of wind turbine.
Finally, the reliability assessment of a gearbox bearing of a 1.5MW wind turbine by the degradation-
Hidden-Markov model proves its validity.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays wind energy plays an increment significant role in
providing electricity all around the world due to its advantages of
renewable and clean source of energy. According to the data
released by the Global Wind Energy Council (GWEC) in Global
Wind Report: Annual Market Update, the cumulative wind power
capacity installed inworld was 487 GWwith a global growth rate of
approximately 12% at the end of 2016, and will be over 800 GW by
the end of 2021 [1].

Coal is the dominant form for power generation in China and it
is the main contributor to the current environmental crisis. China
has beenworking hard to develop wind energy to reduce the use of
coal these years. By the end of 2016, the cumulative wind power
capacity installed in China was 169 GW, who has been the biggest
producer and consumer of wind power in the world [1]. However,
the first Chinese commercial wind farm was installed in 1986 [2]

and theMW level wind turbine (WT) began to develop in 2003. The
design period for most of WTs was short while the wind power
capacity grew extremely quickly in China [3], which results in the
lack of operation experiences for most of Chinese WT operators.

The Chinese wind energy provided 4% of the total power gen-
erationwhile thewind power capacity installed accounted for 9% of
the total, and the mean operation hours of WTs is only 1742 h in
China during 2016 [4]. There are two main reasons for the short
mean operation hours of Chinese WTs: WT faults and weak
renewable power grid-connection.

Generally, the designed life of WTs is normally 20e25 years for
onshore and 25e30 years for offshore. However, it is reported that
current operating lifetime for a large number of turbines is only
between 5 and 13 years that is much lower than the initial
expectation [5]. The performance of WTs inevitably degrades and
results in the unpermitted deviation of characteristic property from
the acceptable condition over time during the service period, thus
finally results faults. With the large-scale development of wind
energy, the reliability of WTs becomes more important. On the one
hand, frequent premature failures result in high downtime,* Corresponding author.
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production loss and maintenance cost. Feng quantified the total
costs of WFs and found that the annual average O&M (operation
and maintenance) cost as a percentage of the total cost of energy of
a WT is 18% for offshore wind farms and 12% for onshore in UK [6].
On the other hand, the large-scale wind energy grid-connected has
potential negative impacts on the safety of power grids because of
the intermittent character of wind.

The purpose of the reliability analysis is to describe a failure and
its impact on components and systems, thus help to improve design
or prevent unacceptable impacts to build a safe and reliable WT
system [7]. WT reliability data includes failure distributions,
downtime distributions, failure rates as failures per turbine per
year, downtime as hours lost per component per WT per year et al.
[8]. Probability and statistics, such as the Gaussian (normal) dis-
tribution, the log-normal distribution, the Rayleigh distribution,
the exponential distribution, and the Weibull distribution, are
applied to evaluate the reliability and failure characteristics of aWT
[7]. Moreover, there are different mathematical models such as
point processes, Poisson processes, homogeneous Poisson process
(HPP), and non-homogeneous Poisson process (NHPP) to model
WT reliability [9].

Most WT failures are due to the following components and
systems: frequency converter, generator, gearboxes, main bearing,
blades, tower, pitch systems, yaw systems and braking systems
[3,10]. It is concluded that blades, control and electrics are com-
ponents with the highest failure rates [8]. Rademakers investigated
the downtime distribution of WTcomponents and found that more
than 85% of the total downtime of WTs was due to the blades,
generator and gearbox [11]. Especially, gearbox's downtime per
failure is highest in WTs with approximately 20% of the wind sys-
tem downtime [12], and the main systems subjected of concern are
gearbox bearings, gear wheels and the lubrication [13].

Since large turbines experience higher wind than smaller ones
that lead to a bigger deterioration of components, larger WTs tend
to appear more failures than smaller ones [7,14]. Tavner found there
was a significant cross-correlation between the failure rate and the
weather conditions, especially temperature and humidity were
more important factors than wind speed [15]. Kim carried out a
reliability analysis of jacket type offshore WT support structure

under extreme ocean environmental loads [16]. Toft found that the
uncertainty in the site specific wind climate parameters accounts
for 10e30% of the total uncertainty in the structural reliability an-
alyses [17]. Nejad carried out a long-term fatigue damage analysis
for gear tooth root bending in WTs and calculated the reliability
considering load and load effect uncertainties [18].

Moreover, Arabian-Hoseynabadi applied a comprehensive Fail-
ure Modes and Effect Analysis (FMEA) on a 2MW WT in design
stage, and investigated the relationship between quantitative FMEA
results and WT field assembly failure rates [19]. Kang carried out
risk assessment by a correlation-FMEA method to obtain the
weakest failure of the floating offshore WT, and they found the
material corrosion is the key factor of failure [20]. Zhang applied
system grading and dynamic Fault Tree Analysis (FTA) to predict the
reliability of floating offshore WT [21]. M�arquez analyzed failure
modes of WT qualitatively by FTA [22]. Li proposed a reliability
assessment framework for the generic gearedWTsystems based on
a Goal Tree, Success Tree and Master Logic Diagram [23].

The performance of WTs inevitably degrades over time due to
aging effect during the service period. The component has a higher
failure probability when it is in the deterioration period, thus its
operation quality decreases rapidly and the decrease is propor-
tional to the severity of the potential failure [24]. Supervisory
Control And Data Acquisition (SCADA) system collects data from
critical components of WTs to understand turbines' operational
performance in a long time condition, Dao presented a
methodology-based on the cointegration analysis of SCADA data to
analyze nonlinear data trends andmonitorWTs operation [25]. The
degradation assessment of system level metrics is significant for
WTs. Based on the statistical analysis of two partly overlapping
datasets comprising 1100 monthly and 1300 hourly time series
spanning 5e25 years for each in Sweden, Olauson found that WTs
lost 0.15 capacity factor percentage points per year corresponding
to a 20-year energy loss of around 6% [26]. Staffell used SCADA data
to study the ageing degradation of WTs in UK, they found WTs lost
1.6± 0.2% of their output per year and degradation reduced a wind
farm's output by 12% and increased the levelised cost of electricity
by 9% over twenty years [27].

In order to avoid critical failure and extend the life of WTs, it is

Nomenclature

apq transition probability from hidden state Sp to hidden
state Sq

A state transition probability matrix of HMM
bqm probability of observable parameter being Gm while

hidden state being Sq
B observable parameter probability matrix of HMM
F(t) partial fitting exponential function of performance

degradation
bF ðtjÞ dimensionless performance degradation function
G grade of performance parameters
O observable parameter sequence of HMM
R reliability
S hidden state of HMM
t time
U residual error
y performance parameter

Abbreviations
WT wind turbine

DHMM degradation-Hidden-Markov model
HMM Hidden-Markov model
CBM Condition-based maintenance

Greek symbols
D increment
ε deviation
z performance degradation rate
l HMM of WTs
p hidden states probabilities of HMM
s standard deviation

Subscript
d degradation
f failure

Superscript
* threshold of parameter
- mean value
0 time-correlated
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