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A B S T R A C T

The approximation of the probability density function (PDF) of the performance function, especially for the tail
distribution, is of paramount importance in structural reliability analysis. In this paper, a new method is pro-
posed to derive the PDF of the performance function with accuracy and high efficiency. The derivation is based
on the maximum entropy method(MEM), where the fractional moments are adopted as constraints. Since the
MEM dose not involve deterministic structural analysis, the efficiency and accuracy of the proposed method is
dependent on the evaluation of fractional moments. In this regard, an adaptive scaled unscented transformation
(ASUT) is developed to obtain the fractional moments with only a few of sample evaluations. The proposed ASUT
is applicable to problems with correlated/uncorrelated random variables. Besides, it can circumvent the so-
called “curse of dimensionality” to some extent. Thus, the proposed method could be taken as a general tool for
highly efficient structural reliability analysis. Numerical examples involving explicit and implicit performance
functions are used to illustrate the implementation of the proposed method, which shows the great efficacy of the
proposed method, particularly for a high-dimensional problem. The problems to be further investigated are also
pointed out.

1. Introduction

Structural reliability analysis entails the computation of the prob-
ability that is out of the safe domain, which provides a quantitative
basis of the assessment of the safety level of a structure. Although such
a definition of structural reliability is quite simple, inherent difficulties
still arises in reality due to the implicit nature and high nonlinearity of
the performance function [1]. In this regard, approximate methods for
structural reliability analysis are of great necessity.

The most commonly used methods to calculate the failure prob-
ability are the simulation methods [2–6], which involves the sampling
of basic random variables and then simulating the performance func-
tion repeatedly. However, they are often too much computationally
demanding to be implemented for practical applications. Alternatively,
the first- or the second- order reliability method (FORM/SORM) [7–10]
has been successfully applied for structural reliability computations.
Due to the requirement of derivatives and sensitivities of the perfor-
mance function, there could be some difficulties to employ these
methods to evaluate failure probabilities when complicated and im-
plicit performance functions are involved. In other words, the merging
of FORM/SORM with finite-element analysis is not straightforward

especially when the nonlinear problems are addressed [1]. The re-
sponse surface method, which replaces the original performance func-
tion by a surrogate model, can significantly reduce the computational
effort for structural reliability analysis. Typical surrogate models in-
clude quadratic response surfaces [11], support vector machines
[12,13], neural network [14] and kriging [15], etc. Nevertheless, it is
often quite difficult to quantify the error made by such a substitution
[16]. The method of moments, which requires neither the computation
of sensitivities nor the calculation of derivatives of the performance
function, is an effective method to perform finite-element based relia-
bility analysis [17]. However, the computation of high-order moments
is always quite difficult [18], especially when the variations of basic
random variables are large and nonlinearity is considered in the per-
formance function.

Recently, the maximum entropy method (MEM) with fractional
moments as constraints has received its popularity in structural relia-
bility analysis [19,20]. The reason of this interest is that the MEM can
provide an unbiased estimation of the probability density function
(PDF) of the performance function and a few of fractional moments
constraints are adequate in MEM. That is because the information of a
large number of central moments can be embodied in a single fractional
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moment. Besides, the tail distribution can be better reproduced by using
fractional moments instead of integer moments as constraints in MEM
[19], which is of critical significance for structural reliability compu-
tations. The efficiency and accuracy of this method relies on the nu-
merical computation of fractional moments. For this purpose, several
methods have been developed, such as the multiplicative dimension
reduction method (M-DRM) [19], the unequal weighted quasi-Monte
Carlo method [21] and the rotational quasi-symmetric point method
(RQ-SPM) [22], etc. Unfortunately, these methods may be incapable of
dealing with problems with correlated random variables and high-di-
mensionality, which widely exist in engineering practices and are open
challenges in reliability community. Consequently, developing a highly
efficient and accurate method for general structural reliability analysis,
which is applicable to independent/dependent random variables, low/
high-dimensional problems, is of great necessity.

The objective of this paper is to propose a highly efficient method
for both fractional moments assessment and structural reliability ana-
lysis based on MEM. The paper is organized as follows. Section 2 recalls
the basic of MEM with fractional moments as constraints for structural
reliability analysis. In Section 3, a new adaptive scaled unscented
transformation, which can accurately evaluate the fractional moments
with high efficiency, is developed. Section 4 provides different nu-
merical examples to validate the proposed method. The final section
contains some concluding remarks and problems to be further in-
vestigated.

2. Maximum entropy method with fractional moments as
constraints for structural reliability analysis

The performance function or the limit state function for structural
reliability analysis can be expressed as

=Z G X( ) (1)

where = …X X XX [ , , , ]d
T

1 2 is the d-dimensional dependent/independent
input random variables and G is a deterministic operator.

Then, the failure probability pf can be expressed as

∫= ⩽ =
−∞

p Z p z dzPr[ 0] ( )f Z
0

(2)

where Pr denotes for probability for short and p z( )Z is the PDF of Z .
It is noted that once the entire range of p z( )Z is obtained, the failure

probability can be evaluated by a simple one-dimensional integral. In
this regard, the method, which can accurately derives the p z( )Z is of
great concern. The MEM with fractional moments as constraints has
been proven as an effective method for this purpose [19,23,21,22].

Since a positive random variable is concerned in MEM with frac-
tional moments as constraints, a coordinate transformation is first im-
plemented. According to computational experiences, the fractional
operations work quite well on the order of 103. First, let

= ×Z Z Z1000 [ / ]1 max , where Zmax is the upper bound for Z and
∈ −Z ( 1000, 1000)1 . Then, let = −Y Z Z min1 1, , where Z min1, is the lower

bound for Z1 and Y is a continuous-valued positive random variable
whose distribution domain is about =Ω (0, 2000)Y . The reason of per-
forming such a transformation is that the MEM with fractional moments
is applicable to positive random variable only and the same initial
conditions may be employed in MEM for different problems since the
distribution domain of Y could be almost the same. It is obvious that
when the distribution of Y is available, the PDF of Z can be obtained
easily according to the probability theory [24]. Then, the task changes
to derive the PDF of Y , which is denoted as p y( )Y .

The differential entropy of p y( )Y , denoted as p y[ ( )]YH , can be
expressed as [25]

∫= −p y p y p y dy[ ( )] ( )ln[ ( )]Y Y YH (3)

and its fractional moments constraints are

∫= = …m Y p y dy k n( ) ( ) , 1, 2, ,Y
ρ ρ

Y k
k k (4)

where mY
ρk is the ρk-th order fractional moment of Y and ρks,

= …k n1, 2, , k denote the fractional orders, which are real numbers.
The reason of using fractional moments lies in that a single frac-

tional moment actually contains the information about a large number
of central moments so that a couple of fractional moments could be
adequate to recover the PDF. This could be found from the Taylor series
expansion of Y( )ρk about its mean Y0, which could be expressed as [22]
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where the binomial coefficient is
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and when → ∞i , ⎛
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. For example, when =i 10000 and =ρ 0.5k ,
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In that regard, Eq. (6) can be truncated and there exists [19]
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where nc is the number of truncated terms, E denotes the expectation
operator and −Y Y[( ) ]i0E is the i-th central moments of the random
variable Y . From Eq. (8), it is clear that a single fractional moment
indeed embodies the information about a large number of central mo-
ments.

According to MEM, the PDF, which maximizes the entropy, is the
most probable PDF from all the PDFs under the moments constraints. In
this regard, when the fractional moments are specified as the con-
straints, the interested PDF p y( )Y can be derived such that

∫
∫

⎧

⎨
⎪

⎩⎪
= −

= = …

p y
p y p y p y dy

m Y p y dy k n

Find ( )
Maximize [ ( )] ( )ln[ ( )]

Subject to ( ) ( ) , 1, 2, ,

Y

Y Y Y

Y
ρ ρ

Y k
k k

H

(9)

The Lagrangian function associated with Eq. (9) can be written as
[19,20,22]

∫ ∫
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where = …λ λ λ λ[ , , , ]n1 2 k denotes the Lagrangian multiplier vector and
= …ρ ρ ρ ρ[ , , , ]n1 2 k is the fractional order vector.
For optimal solution, we have

= ∂
∂

=δ
p y( )

0
Y

L
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(11)
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