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A B S T R A C T

In the context of Gurtin-Murdoch (GM) surface elasticity theory, a size-dependent third-order shear deformable
plate model is developed herein in order to study the nonlinear forced vibration behavior of rectangular na-
noplates with considering surface stress effect. Nanoplates are assumed to be made of functionally graded
materials (FGMs) whose properties are graded in the thickness direction based on a power-law distribution. First,
the constitutive relations of GM model are matricized. Then, Hamilton’s principle is used to derive the governing
equations. The variational differential quadrature, a numerical Galerkin, time periodic discretization, and
pseudo arc-length methods are also employed for numerical solution of the geometrically nonlinear forced vi-
bration problem. The frequency-response curves of rectangular nanoplates with different boundary conditions
are investigated for different values of thickness, power-law index, surface constants and side length-to-thickness
ratio. The results reveal that the surface stress has an important influence on the frequency-response curve of
nanoplates at very small scales.

1. Introduction

Nanostructures including nanoshells, nanobeams, nanowires and
nanoplates are extensively used in novel nanodevices such as small-
scale sensors, actuators and switches. In such nano-electro-mechanical
systems (NEMS), understanding the mechanical behavior of used na-
nostructure is of considerable importance. One way to analyze the
mechanical characteristics of nanomaterials is using atomistic ap-
proaches such as molecular dynamics (MD) simulations [1–3], mole-
cular mechanics [4–9] and density functional theory (DFT) calculations
[10–12]. Since the computational cost of atomistic models are generally
high (especially for nanostructures with a large number of atoms),
modified continuum mechanics models are widely used as alternative
models for the mechanical analyses at nanoscale. Using modified con-
tinuum models instead of classical ones is necessary as size effects play
an important role in the mechanical behaviors of small-scale structures.
The nonlocal [13,14], strain gradient [15–17], couple stress [18–20]
and micropolar/micromorphic elasticity theories [21,22] are among

the modified continuum theories which can capture small scale effects.
There are several research works in the literature based on these the-
ories [23–35].

In 1906, Gibbs [36] developed the concept of surface stress in solids.
Based on Gibbs studies and those of others, atoms at or near a free
surface of a solid body are under equilibrium conditions different from
those for atoms in the bulk of material. Therefore, the energies of sur-
face atoms differ from those of bulk atoms. The surface free energy is
defined as the excess free energy created due to the creation of a surface
in the solid, and the surface stress is defined based on the variation of
the surface free energy with the surface strain [37]. For the structures at
macroscale, the surface stress can be neglected because of its negligible
value as compared to that of bulk stress. But, in nanostructures that
have large surface-to-volume ratios, the surface stress can be no longer
neglected.

Due to the important effect of surface stress on the mechanical be-
haviors of nanostructures, some modified continuum models have been
developed in order to incorporate the surface energy influences into the
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classical elasticity theories (e.g. [38–41]). The reader is referred to two
review papers on the application of surface stress-based continuum
models to the problems of nanostructures [42,43]. Among the elasticity
theories capable of capturing the surface stress effect, the theory de-
veloped by Gurtin and Murdoch (GM) [44,45] has attracted a lot of
interest from the researchers. Based on the GM theory, the surface stress
is formulated as a function of the deformation gradient, and the surface
is treated as a mathematical layer with zero thickness perfectly bonded
to the bulk of material without slipping. In the following, some of the
investigations based upon this theory are cited.

Assadi and Farshi [46] studied the buckling behavior of circular
nanoplates resting on an elastic medium based on the Kirchhoff plate
theory and within the framework of GM elasticity. Hossieni-Hashemi
and Nazemnezhad [47] investigated the nonlinear free vibrations of
Euler-Bernoulli nanobeams made of functionally graded materials
(FGMs) with considering the surface stress effect. It was revealed that,
depending on the amplitude ratio, the surface stress can increase or
decrease the fundamental natural frequency. Allahyari and Fadaee [48]
used the GM theory to study the surface effects on the free vibrations of
circular double-layer graphene sheets including geometrical defect.
Ghavanloo et al. [49] developed a nonlocal model including surface
effects for the modeling of breathing mode in nanowires. Rouhi et al.
[50] derived the governing equations of cylindrical nanoshells based on
the GM theory, and studied their free vibrations.

In the present article, the nonlinear forced vibrations of rectangular
nanoplates made of FGMs are analyzed considering surface effects. The
GM model is utilized to capture the surface stress effect. Moreover,
Reddy’s third-order shear deformation theory (TSDT) is applied to
consider the shear deformation influences. The geometric nonlinearity
is also taken into account according to the von Kármán hypothesis. The
matricized variational expression of the problem is obtained using the
variational differential quadrature (VDQ) method [51,52]. Then, the
numerical-based Galerkin method [54–57], time periodic discretization
[53–56] and pseudo arc-length method [57] are employed to predict
the geometrically nonlinear resonance characteristics of nanoplates
with the consideration of surface effects. The frequency-response curves
of nanoplates with SSSS, CCCC and CSCS boundary conditions (simply-
supported and clamped edges are abbreviated to S and C, respectively)
are finally given for various geometrical and material properties.

2. Mathematical formulation and solution procedure

2.1. Matrix representation of GM model

Fig. 1 shows a rectangular nanoplate with length a, width b and
thickness h, defined in the rectangular coordinate system

≤ ≤ ≤ ≤ − ≤ ≤x a x b h x h(0 ,0 , /2 /2)1 2 3 . It is assumed that the nanoplate
is made of a mixture of silicon (Si) and aluminum (Al), in which the
material at bottom = −x h( /2)3 and top = +x h( /2)3 surfaces are Al-rich
and Si-rich, respectively.

As indicated, the nanoplate has a bulk part and two surface layers
perfectly bonded to the bulk part without slipping. For the bulk part,
the constitutive equation is expressed as

= = +σ σ λε δ με2ij ji kk ij ij (1)

in which σij and εij denote the components of bulk stress and strain
tensors, respectively; λ and μ are classical Lamé constants. Also, δij is
the Kronecker delta.

For the surface layers, based on the GM model [45], the constitutive
relations are formulated as
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where ui is the displacement components and σαβ
s stands for the com-

ponents of surface stress tensor. In addition, τ s is the surface residual
tension; λs and μs show surface Lamé constants.

Based on Eqs. (1) and (2) and using Voigt notation, the constitutive
relations associated with to the bulk (B ) and surface layers (S ) can be
written in the following matrix forms
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in which =∼ u u uU [ ]1 2 3 T is the displacement vector. By neglecting ε33

and σ33 due to the thinness of plate, one has
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where C represents the bulk stiffness matrix.
Also, the Voigt form of the un-symmetric surface stress tensor σs and

surface strain vector εs are written as
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Fig. 1. Schematic of a rectangular nanoplate with bulk and surface layers.
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