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A B S T R A C T

Relevance of finite strain shell piezoelectric analysis is significant due to the general use of polyvinylidene
fluoride (PVDF). A finite-strain geometrically exact shell model for the analysis of piezoelectric laminated
structures is introduced. An assumed-strain formulation is employed, with least-squares fitting of contravariant
linear stress fields. This allows the condensation of internal degrees-of-freedom corresponding to the assumed
strains. The resulting piezoelectric shell has 8 degrees-of-freedom in each node, with 3 position/displacement
degrees-of-freedom, 3 rotation parameters and the upper and lower electrostatic potential at the nodes. This
contrasts with available formulations where only one electric degree-of-freedom is considered. A total of 32
degrees-of-freedom in each 4-node element are used. In term of implementation, we use a generalized strain and
generalized stress formulation to reproduce the conventional finite element organization. Six examples are
presented, with transversely isotropic and orthotropic cases, including finite strains and asymmetric plies.
Results show a remarkably good agreement with the sources and we achieve higher values of actuation.

1. Introduction

Thin smart structures (e.g. piezoelectric), are increasingly applied in
mechanical and aerospace engineering for shape control and damage de-
tection. The great importance of this effect emerged with Paul Langevin
sonar invention [20]. A complete description of applications of piezo-
electricity since the early 1920's has been accomplished in [19]. In sum-
mary, applications in precise frequency control, filtering, passive signal
processing, ultrasounds, actuators and motors, sensors and ignition sys-
tems (knocking sensor control) make extensive use of piezoelectric de-
vices. Due to their fabrication and efficiency advantages, thin structures
(see, e.g. [4]) and particularly shell structures (see recent advances on
shells by Nguyen et al. [28]) are particularly important when dealing with
smart materials. In addition, dimensional reduction can be used with great
advantages in the computational cost. Robust design and simulation tools
for the coupled electromechanical equations is a necessity. Specifically, for
PVDF [14], strains can be significant and a full nonlinear formulation is
required. A linear solution was obtained by Moleiro et al. [26] after work
of Garção et al. [18]. In terms of actuation, the sources [2,17,29] are
important and motivate the application with coupled finite elements. For
small strains, finite element solutions are widespread, cf. [23,26,36]. For
plates, shells and 3D continua applications at nanoscale, see [5–7].

However, a limited number of works exist for finite strain piezoelectric
shell analysis. For beams, the analysis of Mukherjee and Chaudhuri [27] is
an important reference for PVDF analysis. In essence, for finite strain
shells, five relevant papers are available in this topic [21,31,37,40,41], all
using a single electric degree-of-freedom per node (the difference between
top and lower electrostatic potential). We extend a recently developed
formulation [10], adding rotational degrees-of-freedom, coupling with the
electric field and explicit zero poling stress condition. In addition, two
electrostatic potential degrees-of-freedom per node are adopted, corre-
sponding to the upper and lower shell faces. The reasons for this decision
are twofold:

• Symmetry. The use of electrostatic potential at the upper and lower
shell faces agrees with the kinematic shell description.

• Completeness in terms of behavior. When only one electrostatic
potential, only bending piezoelectric effects can be represented.
With two independent degrees-of-freedom, in-plane effects are also
included in the model.

This work is organized as follows: in Section 2 governing equations are
explored (equilibrium, electrostatics, piezoelectricity and global pro-
blem statement). Section 3 introduces the specific kinematics with a
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local frame and the constitutive updating. Section 4 shows our least-
squares assumed strain formulation and linearization, where all strain
components are fitted to the assumed-strain field. In Section 5, we
present a new piezoelectric updating technique for finite strains en-
suring geometrically exact results. Section 6 presents four verification
tests and Section 7 presents two benchmark tests, showing excellent
agreement with published data. Finally, Section 8 presents the con-
clusions.

2. Governing equations

2.1. Equilibrium

Using conventional notation in solid mechanics, we write the
equilibrium equations as [30]:

∂
∂

+ =
σ
x

b 0ij
i

j (1)

with the Cauchy tensor components being σij ( =i j, 1, 2, 3) whereas bi
are the components of the body forces. In Eq. (1) i is the direction index
and j is the facet index. Moreover, in the previous expression, xj are the
coordinates of a given point under consideration in the Lagrangian
description. In addition, the following natural and essential boundary
conditions hold on each part of the boundary = ∪Γ Γ Γt u where Γt is
the mechanical natural boundary and Γ u is the mechanical essential
boundary:

=t σ v Γ· on t (2)

=u u Γon u (3)

where t is the known stress vector on Γt where v is the outer normal
and u is the prescribed displacement field u on Γ u. As customary,
conditions expressed in Eqs. (1) in the domain and (2)–(3) at the
boundaries, are satisfied for a time parameter ∈t T[0, ] with T being
the total time of analysis and for a point with position ∈x Ω belonging
to the deformed configuration at the time of analysis. Equilibrium
configuration corresponds to the domain Ω. In tensor notation, Eq. (1)
yields:

+ =σ b 0· T (4)

with = ∂
∂x being the spatial gradient operator. After multiplication by

the velocity field u̇, integration in the deformed configuration Ωa and
application of integration by parts component-wise, we obtain the fol-
lowing power form using the equilibrium configuration Ωa (Ẇint is the
internal power and Ẇext is the external power):
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where l, the velocity gradient reads: = =∂
∂

∂
∂l x

x
u
x

˙ ˙ . For algorithmic rea-
sons, Eq. (5) is now written in a reference frame b (and configuration
Ωb) which is obtained by transformation (see, e.g. [11])

∫ =S e Ω W: ˙ d ˙
Ω ab ab b ext

b (6)

with the Cauchy stress being given by = =σ S F S Faa J ab ab ab
T1

ab
. We in-

troduce Ωa as the current configuration and Fab is the relative de-
formation gradient between configurations Ωa and Ωb. Jab is the relative
Jacobian determinant = FJ detab ab. In (6), eab is the relative Green-La-
grange tensor, obtained from the relative deformation gradient Fab as:
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We now have to relate ėab with l:
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2.2. Electrostatics

Using the electric field E as the quotient between Coulomb's force
and an arbitrary test charge, charge conservation of electrostatics is
expressed by Gauss's law:

=Eε ρdiv0 (9)

where ρ is the charge density and ≅ × −ε 8.854 100
12 −Fm 1 is the vacuum

permittivity. In a dielectric, charge density is a sum of bound and free
densities: = +ρ ρ ρb f . Introducing the electrostatic potential ϕ, such
that = −∇E ϕ, we obtain:

∇ = −ε ϕ ρ0
2 (10)

For an isotropic medium, the dielectric displacement vector is de-
fined as

= + = − ∇ +D E P PϕE E (11)

where P is the polarization density (to be specified later as a function of
strain). In (11), we introduced the permittivity matrix E as:
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We use the charge conservation of electrostatics in the form of Gauss
law to obtain a relation for D:

− − =D ρ ρdiv ( ) 0b

ρf

 
(13)

where ρb is the bound charge density, so that = −P ρdiv b. Boundary
conditions for Eq. (13) are specified on = ∪Γ Γ ΓD ϕ where ΓD is the
electric natural boundary and Γ ϕ is the electric essential boundary:

= D vσ Γ· on D (14)

=ϕ ϕ Γon ϕ (15)

where σ is the known electric displacement vector on ΓD where v is the
outer normal and ϕ is the prescribed electrostatic potential on Γ ϕ.
Power density conjugacy between ρf and ϕ̇ results in the following
weak form for (13), written for configuration Ωb:

∫ ∫=Dϕ Ω ϕρ Ω˙ div d ˙ d
Ω b Ω f b

b b (16)

Application of Green's first identity to (16) results in:

∫ ∫ ∫∇ = −Dϕ Ω ϕσ Γ ϕρ Ω˙ · d ˙ d ˙ d
Ω b Γ D Ω f b

b D b (17)

Introducing the configurations in E as Ea to identify the equilibrium
(Ωa) position, we have:

= −∇E ϕa b a (18)

with ∇ = ∂
∂ϕ xb

ϕ
b
where ∈x Ωb b are the coordinates for reference con-

figuration Ωb. With these definitions, (17) can be rewritten as:

∫ ∫ ∫∇ = −Dϕ Ω ϕ σ Γ ϕ ρ Ω˙ · d ˙ d ˙ d
Ω b a a b Γ a a D Ω a f b

b D b (19)

2.3. Piezoelectricity

Resorting to the mixed-set version of piezoelectricity (see, e.g. [19])
and by using our previous framework, we introduce the constitutive
part of the stress as a sum of mechanical and electrical terms:

̂= −S e E S e S Eˇ ( , ) ( ) ( )͠a a a a a a a0 0 0 0 (20)

The dielectric displacement vector D is obtained from a similar
relation:

= + ∼D e E D e D Eˇ ( , ) ( ) ( )a a a a a a a0 0 0 (21)
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