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A B S T R A C T

It is well-known that rock masses may present marked stress anisotropy. However, most of the tunnel analyses
(numerical and analytical) assume the tunnel axis aligned with one of the principal stress directions. When this is
not the case, axial shear stresses appear, which then are neglected, as it is done in all analytical solutions
available for tunnel analysis. Existing solutions may consider advanced nonlinear ground behavior (i.e. elastic-
brittle-plastic with e.g. Hoek and Brown failure criteria), linear-elastic ground with transversely anisotropic
properties, seismic loading, groundwater and support, etc., but all consider that the axis of the tunnel aligns with
one of the principal far-field stresses. This is also what is generally assumed when conducting more sophisti-
cated, three dimensional numerical analyses. In this paper, an analytical solution to calculate the stresses and
displacements induced by far-field axial shear stresses is presented. Solutions for supported and unsupported
tunnels are provided. The proposed analytical solution can be combined with the classical Kirsch and Einstein-
Schwartz solutions to determine the complete stress and displacement fields around the tunnel. Further, the
effects of stress anisotropy are discussed.

1. Introduction

Analytical solutions have been extensively developed for tunnels.
Some of them are regularly used in practice, such as the Kirsch and
Einstein-Schwartz solutions (Kirsch, 1898; Einstein and Schwartz,
1979). Despite improvements on numerical modeling, analytical solu-
tions are still used because they allow fast and robust tunnel analysis.
For instance, Ledesma and Alonso (2017) obtained accurate ground
deformation predictions caused by tunnels under the World Heritage
Structures “Sagrada Familia Basilica” and “Casa Mila”, in Barcelona,
Spain, using analytical solutions. For reliability problems, which may
require a large number of calculations, analytical solutions are widely
used because numerical methods may be unmanageable or even un-
feasible. Analytical solutions are attractive because they incorporate the
most significant variables in a closed-form formulation and are
benchmarks to sophisticated numerical analysis and code validation.
However, the mathematical treatment of analytical solutions may be
cumbersome and simplifications must be assumed. The analytical so-
lutions for tunnels normally rely on 2D plane strain conditions and
circular tunnel cross-sections.

New analytical solutions for tunnels are being developed. For ex-
ample, the solutions proposed by Kirsch and Einstein Schwartz were

expanded by Bobet (2003) to incorporate the effects of groundwater
flow and seismic loading for lined and unlined deep tunnels in linear
elastic ground. Further expansions, to include transversely anisotropic
elastic ground, were carried out by Hefny and Lo (1999), Bobet (2011),
Zhang and Sun (2011), Bobet and Yu (2016), Bobet (2016a, 2016b).
Analytical solutions for viscoelastic ground are also available. Those
solutions were proposed by Wang et al. (2013, 2015, 2017) for deep
tunnels with elliptical cross-section and also for circular twin tunnels.
The analytical solutions mentioned so far are applicable to deep tun-
nels. Analytical solutions for shallow tunnels in linear-elastic ground
were presented by Bobet (2001), Park (2005), Pinto and Whittle
(2014), Strack and Verruijt (2002), Verruijt and Booker (1996) and
Verruijt (1997). The applicability of analytical solutions for shallow
tunnels was assessed by Chou and Bobet (2002) and Pinto et al. (2014).
Both papers found good agreement between field data and predictions
using analytical methods.

The closed-form solutions found so far assume elasticity and, thus,
are valid only if minor or no yielding is present around the opening.
Including plasticity in the solutions increases the complexity of the
problem, and results are currently limited to unsupported tunnels, static
loading, dry ground and isotropic far-field stresses. Salesҫon (1969)
developed an analytical solution for a loaded hollow plate in elastic
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perfectly plastic ground with Mohr-Coulomb failure. Such solution
applies to deep tunnels. The solution considers associated and non-as-
sociated flow rules. Other solutions, for other failure criteria are cur-
rently available, for example the solution from Carranza-Torres (2004)
with the Hoek and Brown failure criteria. Sharan (2003, 2005) in-
corporated elastic-brittle-plastic behavior with Hoek and Brown failure
in an analytical solution. Massinas and Sakellariou (2009) found an
analytical solution for shallow tunnels considering elastic perfectly
plastic material with Coulomb failure.

In all the formulations discussed, the tunnel axis is aligned with one
of the principal directions because all solutions assume plane strain
conditions on any cross-section perpendicular to the axis of the tunnel.
Therefore, the far-field axial shear stress that appears due to the mis-
alignment of the tunnel with the horizontal principal stresses is ne-
glected.

It is well-known that rock masses may have pronounced anisotropic
far-field stresses (Brady and Brown, 2006; Jaeger et al., 2007; McGarr
and Gay, 1978). Under these conditions, the plane strain assumption
may be incorrect and may lead to erroneous conclusions (Hoek, 2008).
The importance of the orientation of the underground excavation with
respect to the far-field stress tensor is well-recognized in choosing the
orientation of caverns and their shape. It is generally recommended to

orient them parallel to the major principal stress direction, and with a
shape such that stress concentrations are minimized (Goodman, 1989).
However, for most applications in Civil engineering, the tunnel align-
ment is pre-determined and must be designed regardless of its or-
ientation with respect to the far-field stress tensor.

McGarr and Gay (1978) determined the complete geostatic stress
tensor from 77 different sites. From their compilation, it is possible to
estimate the level of stress anisotropy expected in rock masses. Fig. 1
shows the scatter of the principal stress ratios compiled by McGarr and
Gay (1978) (σ1/σ2, σ1/σ3, σ2/σ3) with depth. The average, plus or
minus one standard deviation, for each principal stress ratio is: σ1/
σ2= 1.45 ± 0.40; σ1/σ3= 2.42 ± 1.14; and σ2/σ3= 1.66 ± 0.5.
Those ratios may be even higher for shallow depths (smaller than
100m) because of the topography influence (Jaeger et al., 2007). These
statistics show that the expected anisotropy is indeed high and quite
variable. Most of the data for σ1/σ2 and σ2/σ3 are in the range between
1 and 2. Fig. 1 also shows that the geostatic stress tensor most often
shows anisotropy in the 3 directions (i.e. σ1≠ σ2≠ σ3).

Gysel (1975) presents the geostatic stress tensors with respect to the
tunnel alignment for two sections of the Sonnerberg tunnel, built in the
Alps, in Lucerne, Switzerland. The sections are 1 km apart approxi-
mately and excavated in different types of sandstone. Table 1 shows the

Nomenclature

List of variables

α angle between tunnel axis and major horizontal principal
stress

σxx,ff far-field horizontal stress normal to the tunnel axis
σyy,ff far-field vertical stress, assumed normal to the tunnel axis
σzz,ff far-field stress parallel to the tunnel axis
τzx,ff far-field axial shear stress
Kxy stress ratio (σxx,ff/σyy,ff)
w axial displacement
ur radial displacement
G=Gg shear modulus of the ground
Gs shear modulus of the structure
E Young’s modulus
ν Poisson’s ratio
r0 tunnel radius
t support thickness

ri tunnel internal radius (r0+ t)
T thrust force of the liner
M bending moment of the liner
V axial shear force of the liner
ϕ friction angle of the ground
c cohesion of the ground
Ψ dilatancy angle of the ground
x, y, z coordinate system attached to the tunnel, with z-axis

parallel to tunnel axis
σv vertical stress
σh minor principal horizontal stress
σH major principal horizontal stress
r, θ, z cylindrical coordinate system, with z-axis parallel to

tunnel axis
σθθ tangential stress in cylindrical coordinates
σrr radial stress in cylindrical coordinates
τrθ in-plane shear stress in cylindrical coordinates
τrz axial shear stress in cylindrical coordinates
τθz axial shear stress in cylindrical coordinates
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Fig. 1. Ratio of principal stresses with depth, from McGarr and Gay (1978) data compilation.
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