ELSEVIER

Contents lists available at ScienceDirect

Tunnelling and Underground Space Technology

journal homepage: www.elsevier.com/locate/tust

Evaluation method of rockburst: State-of-the-art literature review

Jian Zhou^{a,*}, Xibing Li^a, Hani S. Mitri^b

^b Department of Mining and Materials Engineering, McGill University, Montreal, Canada

Keywords: Underground engineering Rockburst phenomena Rockburst Rockburst classification Rockburst prediction

ARTICLE INFO

ABSTRACT

The evaluation of rockburst is becoming increasingly important as mining activities reach greater depths below the ground surface. In the literature, rockburst assessment has been tackled by many researchers with various methods. However, there has not been a study that examines and compares different rockburst assessment methods. In this paper, rockburst classification and its varying definitions are briefly summarized. A comprehensive review of the research efforts since 1965 then follows. This includes empirical, numerical, statistical and intelligent classification methods. Of particular significance is that in all the above-mentioned techniques, the review highlights the source of data, timeline of study and the comparative performance of various techniques in terms of their prediction accuracy wherever available. The review also lists current achievements, limitations and some promising directions for future research.

1. Introduction

Rockburst can be a major problem in deep underground mines causing injury to mine operators and damage to underground workings. The term "rockburst" is commonly used to describe a wide range of rock failures, which is a twentieth century phenomenon that occurs in tunnels, shafts, caverns and mines (Dowding and Andersson, 1986; Kaiser et al., 1996; Blake and Hedley, 2003; Li et al., 2017c, 2017d). Rockbursting has been a common occurrence in the mines of South Africa (Leger, 1991), China (Zhou et al., 2012a), Chile (Ortlepp, 2005), USA (Blake and Hedley, 2003), Canada (Kaiser et al., 1996) and Western Australia (Heal et al., 2006), and in tunnels in Norway (Barton et al., 1974) and China (Zhang et al., 2011). It has been reported to occur in excavations in other countries such as Russia, Sweden, Switzerland and Korea, and this is not an exhaustive list (Linkov, 1996; Ortlepp, 2005; Cai, 2013; Zhou et al., 2016a). As claimed by Suorineni et al. (2014), rockburst is the "cancer" in geomechanics of contemporary deep mining. As mining depths and locations of excavation activities have become increasingly challenging, more cases of rockbursting have occurred. It can be concluded that rockbursting may now be a universal problem.

Due to the complex nature of the rockburst phenomenon, precise rockburst prediction is quite difficult. As noted by Brown (1988), it is difficult to even reach a consensus on the definition of rockburst. Hoek and Brown (1980) also pointed out that this type of progressive failure process was still not clearly understood. Since Cook et al. (1966) first

proposed a method for evaluating the rockburst of a mining layout, a variety of methods, either elaborate or simplified, ranging from empirical to theoretical and mathematical approaches for predicting rockburst potential have been developed in the past few decades with much success. However, due to the complex features of rockburst assessment systems, such as multivariable and strong interference, there is no universally accepted method to predict the timing of rockburst, and the best we can achieve today is to identify areas of high rockburst using empirical criteria, numerical models or personal experience.

Evaluation of rockbursts methods is broadly categorised in two aspects: classification of rockbursts and prediction of rockbursts potential. Different researchers have analyzed the source and damage mechanism of rockbursts from different aspects such as the energy theory, strength theory, the rigidity theory, the instability theory, the burst liability theory, the catastrophe theory, the theory of chaos, the fractal theory, the bifurcation theory and the theory of dissipative structures (Cook et al., 1966; Vardoulakis, 1984; Zhou et al., 2012a; Afraei et al., 2018), and nearly 100 rockburst empirical criteria were used to classify rockburst categories. The study of rockburst potential is an important aspect of rockburst mechanism research. It is qualitative or quantitative determination of rockburst potential on the basis of mechanism research. The evaluation of rockburst potential is mainly based on the research and understanding of the mechanical properties of rock itself under certain conditions. According to the literature review, the research on rockburst potential can be divided into two major aspects (Zhou, 2015; Zhang et al., 2016): rockburst potential of rock and

E-mail address: csujzhou@hotmail.com (J. Zhou).

^{*} Corresponding author.

Nomenclature		β	Intersection angle between the direction of tunnel excavation and the direction of maximum principal stress, °
UCS_{rm}	Unconfined compressive strength of rock mass, MPa	D_t	Indicator of dynamic rock failure time, ms
D_i	Damage index	Ü	Total peak strength of before rock deformation
C	Cohesion of rock mass, MPa	U_l	Permanent deformation before peak or plastic deforma-
φ	Friction angle of rock mass	•	tion
$\sigma_{\!\scriptscriptstyle{\Theta}}$	Maximum tangential stress of surrounding rock, MPa	Φ_k	Rock kinetic energy with destructive ejection, kJ·m ⁻³
σ_1	Axial stress of surrounding rock, MPa	Φ_0	Maximum elastic strain energy, kJ·m ⁻³
$\sigma_{\!\scriptscriptstyle m L}$	Axial stress of tunnel, MPa	$K_{\rm v}$	Rockmass intact coefficient
$\sigma_{\rm c}$	Uniaxial compressive strength of rock, MPa	E_{se}	Seismic energy of the blast in J, $E = 10^{2.76 - lg\tau + 2.24}$, (τ is
$\sigma_{1 \mathrm{cr}}$	Rockburst critical stress, MPa	50	the duration of the seismic event in s)
$\sigma_{\rm t}$	Uniaxial tensile strength of rock, MPa	J	Total specific work of the explosive charge in J/kg
$\sigma_{ m RB}$	Rockburst maximum stress, MPa	Q	Mass of the explosive charge (grammonite 79/21) in kg
K_W	is the elastic strain energy index	ρ_1	Average value of the electrical resistance in Ω -m
K_{σ}	is the stress drop index	ρ_2	Electrical resistance of the mass in the no-rockburst-ha-
K_{rb}	is the composite index	F 2	zard state in Ω·m
Н	is the buried depth of rock sample, m	$\sigma_{ m max}$	Maximum tangential stress on the boundary of a circular
λ_0	is equal to the maximum initial principal stress of vertical	mux	opening (or σ_{θ}), MPa
.0	axis and the ratio of principal stress to the plane, and	$\delta_{ m o}$	Radial deformation at the face
	approximately equals to σ_{θ}	$r_{\rm p}/r_{\rm o}$	Plastic radius/radius of cavity
λ_1	is the softening modulus (value of elastic modulus after	$\sigma_{ m cm}$	Rock mass strength, MPa
1	the peak value of stress in the stress[HYPHEN]strain	$I_{\rm s}$	Point load strength of the rock, MPa
	curve), GPa	K_{p}	Post-peak stiffness of a discontinuity
λ	is the lateral pressure coefficient	$K_{\rm e}$	Local mine stiffness or surrounding rock mass stiffness
θ	Intersection angle between the direction of tunnel ex-	$F_{ m ob}$	Applied shear stress minus the shear strength, MPa
J	cavation and the direction of maximum principal stress, °	$F_{\rm res}$	Residual shear strength, MPa
lg(E/J)	is the common logarithm of the rockburst radiated energy	e_4	Mining-induced strain energy calculated at the boundary
SD	is the standard data of the common logarithm of the	-4	of the opening (pillar skin)
	rockburst radiated energy;	Ъ	Temporal coefficient value calculated in time windows
RMi	is the Rock Mass index	bm	Average value of b
E_u	Unloading tangential modulus, MPa	$e_{\rm c}$	Critical strain energy density, KN/m ³
E_{t}	Throw energy of rock fragments after failure of a specimen	M	Post-peak modulus, GPa
-t	under uniaxial compression	AI	Activity index
E_{s}	Maximum elastic strain energy, kJ·m ⁻³	ERR	Energy release rate, KJ/m ³
E_p	Dissipated energy in the creation of microfracture and	PSF	Potential for stress failure
Lp	plastic deformation of the rock in one cycle of loading,	BPI	Burst potential index, %
	kJ·m ⁻³	BIM	brittleness index modified
E_e	Elastic energy stored in the rock through loading up to σ_A	BSR	Brittle shear ratio
-e	and unloading, $kJ \cdot m^{-3}$	$D_{ m T}$	Failure duration index
ϵ_f	Strain before peak	$K_{\rm u}$	Brittle deformation coefficient
ε_b	Strain after peak	S	Stress index
μ	Poisson's ratio of rock	H_{cr}	critical depth
λ	Lateral pressure coefficient	k	Rock brittleness index
γ	Rock density, kN·m ⁻³	$V_{ m p}$	Longitudinal wave velocity of the rock mass, km/s
σ_n	Normal stress at the slipping point, MPa	$V_{ m p}$	Longitudinal wave velocity of the fock mass, km/s Longitudinal wave velocity for the intact rock, km/s
φ_d	Dynamic friction angle, °	RVI	Rockburst vulnerability index
F_1	Area surrounded by strain ε axis and before the peak stress	ω	Ejection rate
- 1	- axial strain curve	K_w	Rockburst variable formula
F_2	Area surrounded by strain ε axis and after the peak stress –	LERD	Local Energy Release Density, MJ/m ³
- 2	axial strain curve	NR	No rockburst
PES	Criterion of potential energy of elastic strain, kJ/m ³	LR	Light rockburst
E	Elastic modulus of the rock mass, GPa	MR	Moderate rockburst
E_u	Unloading tangential modulus of the rock mass, MPa	HR	Heavy rockburst
φ	Internal friction angle of rock, °	SR	Serious rockburst
Ψ	mema menon ungic or rock,	DIC	ociioao iocnomist

rockburst potential of rock mass engineering. The former refers to the possibility of rockburst under certain conditions. If rock does not have rockburst potential, rockburst will not occur during rock mass engineering in this kind of rock. The test method is mainly used for rockburst proneness research. The rockburst tendency of rock mass engineering, that is, is the possibility of rockburst occurring in rock engineering under certain conditions. The research method is generally based on the rockburst tendency, combining with the geological conditions of rock mass engineering, such as in-situ stress, rock layer

distribution, rock structure and other conditions, according to the onsite field work. Numerical simulation is carried out on the layout and excavation process, and the stress distribution of the surrounding rock obtained is judged by corresponding criteria of rockburst classification.

This paper focuses on providing the reader with a complete review of various rockburst prediction methods. Many studies on rockburst prediction have been carried out in the past few decades, especially based on various different statistical and intelligent techniques. For instance, some studies apply single learning techniques, such as neural

Download English Version:

https://daneshyari.com/en/article/11001402

Download Persian Version:

 $\underline{https://daneshyari.com/article/11001402}$

Daneshyari.com