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a b s t r a c t 

The matching pursuit algorithm (MPA) is used in many applications for selecting the best predictors for a 

vector of measurements of size n from a dictionary that contains p n atoms, where usually n ≤ p n . A major 

unsolved problem is to determine the optimal stopping rule. In this work, we investigate various stop- 

ping rules which are modifications of the information theoretic (IT) criteria derived for Gaussian linear 

regression. Because all of them involve the degrees of freedom (df) given by the trace of the hat matrix, 

we provide some theoretical results concerning this matrix. We also propose novel stopping rules. An 

important contribution of this paper is a method for computing the df efficiently when big data ( n � p n ) 

are processed. The significance of the auxiliary variables appearing in MPA for big data is clarified via 

a theoretical analysis. The superiority of the new stopping rules in comparison with the traditional ap- 

proaches is demonstrated in simulations involving big data ( n � p n ) or overcomplete dictionaries ( n < p n ) 

and in experiments with air pollution data. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Motivation 

An important problem in multivariate signal processing is the 

prediction of a particular entry of the vector random process { y ( t )} 

by using the past measurements as well as the current measure- 

ments available for the other entries of the vector (see, for ex- 

ample, [1] and the references therein). The problem can be easily 

solved by applying the techniques for the identification of autore- 

gressive models with exogenous input [2] . The most difficult part 

is the selection of the best possible predictors from the existing 

set of observations. In many practical applications, a large number 

of past samples are available and this restrains the use of the full- 

search approach during the training phase when the predictors are 

chosen. 

The computational effort for selecting the predictors can be re- 

duced significantly by applying greedy algorithms [3] . From this 

family of algorithms, we are especially interested in the match- 

ing pursuit algorithm (MPA), which is extensively used in signal 

processing [4] , statistics [5] , and approximation theory [6] . At each 
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iteration, MPA yields a linear model for the response vector y of 

size n ; each such model is a linear combination of some of the 

entries of a given set of p n predictors. Theoretical results on the 

performance of MPA have been recently proven [7] under the hy- 

potheses that (i) p n grows very fast when n increases and (ii) the 

predictors are not independent. 

The number of iterations for MPA can be as large as m ub = 

20 , 0 0 0 and a different model is created at each iteration. The out- 

come of the algorithm is the model deemed to be “the best” with 

respect to the selection rule. Because a selection rule decides the 

outcome of MPA, it is often called the stopping rule . An open prob- 

lem concerns the stopping rule that should be applied as the use of 

cross-validation (CV) is computationally intensive when the num- 

ber of iterations, m ub , is large [3] . 

In our conference paper [8] , we have investigated the perfor- 

mance of eleven stopping rules based on different information 

theoretic (IT) criteria. All of them have been derived from selec- 

tion rules previously applied in classical linear regression. Another 

common feature is the presence of the degrees of freedom (df) in 

their expressions. According to the definition [9] , df is evaluated 

as the trace of the linear operator mapping y to ˆ y , where ˆ y is the 

estimate of y produced by a certain model. This linear operator is 

known as the hat matrix. Importantly [10] , there is empirical ev- 

idence that the trace-based computation may underestimate the 

value of df. 
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1.2. Contributions 

After presenting MPA in Section 2 , we outline the following re- 

sults in the rest of the paper. 

In Section 3 , we briefly discuss the IT criteria which are cur- 

rently used in conjunction with MPA and introduce new stopping 

rules. The new formulae are based on the properties of the hat 

matrix that are presented in Appendix A . We show that, in gen- 

eral, the hat matrix is not a projector and give an upper bound on 

the increase of df from the m th iteration of the algorithm to the 

(m + 1) th iteration. These results were stated without proof in [8] . 

It has been already pointed out in [7] that, because of the mas- 

sive amount of data produced nowadays, a formulation of MPA for 

n � p n is really needed. Re-writing the algorithm for the big data 

case is straightforward and it was already done in [7] , but the most 

difficult part is the calculation of df at each iteration. In Theorem 1 , 

we demonstrate how this can be done efficiently. There is no re- 

sult similar to Theorem 1 in the previous literature. In Section 4 we 

perform a theoretical analysis that clarifies the significance of the 

auxiliary variables appearing in the formulation of MPA for big 

data, but not in the classical formulation of the algorithm. 

In Section 5 we present the results of an extensive empirical 

study which shows the superiority of the newly introduced IT cri- 

teria. In experiments with air pollution data, the new criteria work 

better than CV. A more comprehensive discussion of the theoret- 

ical and empirical results obtained in this work can be found in 

Section 6 . 

1.3. Notation 

Bold letters denote both vectors and matrices; I denotes the 

identity matrix of appropriate size, while 0 denotes the vec- 

tor/matrix whose entries are all equal to zero. The symbol x a 
stands for the a th entry of a vector x . If X is a matrix, then X a : 

is the a th row of X, X : b is the b th column of X , and x ab denotes 

the entry of X located in the a th row and the b th column. The op- 

erator for transposition is ( · ) � ; the Euclidean norm of a vector x 

is || x ||; the operator � is employed for the element-wise product 

of vectors. For an arbitrary matrix X , Sp( X ) denotes the linear sub- 

space spanned by the columns of X and Ker( X ) is the null space of 

X . 

2. The matching pursuit algorithm 

2.1. Description 

Assume that the response vector y = [ y 1 , . . . , y n ] 
� is given, as 

well as the matrix X = [ x 1 · · · x p n ] of potential predictors, which is 

called dictionary. If X ̂

 β is the fitted linear model, then all non-zero 

entries of ˆ β correspond to the selected predictors. The residuals 

are given by e = y − X ̂

 β. In the initialization phase of the algo- 

rithm, the vector y and the columns of X are centred, and 

ˆ β is 

set to 0 . At each iteration, MPA selects the column of X leading to 

the largest reduction of the residual sum of squares. Assume that, 

at the j th step of the algorithm, the column of X indexed by s ( j ) 

is selected, where 1 ≤ s ( j ) ≤ p n . Then, only the s ( j )th entry of ˆ β is 

updated by using the formula ˆ βs ( j) ← 

ˆ βs ( j) + ν(x � 
s ( j) 

x s ( j) ) 
−1 x � 

s ( j) 
e . 

MPA can be seen as a coordinate descent on the objective ‖ y −
X β‖ 2 , the chosen coordinate corresponding to the largest element 

of the gradient. 

The parameter ν ∈ (0, 1] is the step size, also known as the 

shrinkage parameter. Note that all other entries of ˆ β remain un- 

changed. This is a major difference from orthogonal matching pur- 

suit (OMP) which re-estimates all the entries of the vector of linear 

parameters at each step of the algorithm. The two algorithms have 

been already compared in [ 3 , Sec. 12.7.1.1]. 

In general, the value of the shrinkage parameter in MPA is 

taken to be small, for example, ν = 0 . 1 . This is justified in [ 3 , 

Sec. 12.6.2.1] by emphasizing the relationship between MPA and 

the well-known Lasso algorithm [11] . Another peculiarity of MPA is 

that the same predictor can be selected not only once, but multiple 

times during the iterations of the algorithm even when ν = 1 . This 

makes it difficult to evaluate the complexity of the linear model 

produced at each step of MPA. We discuss this aspect below. 

2.2. Hat matrix 

Let ˆ y m 

= X ̂

 βm 

be the estimate of y obtained after the m th step 

of the algorithm. We denote by B m 

the linear operator, named the 

hat-matrix, which maps y to ˆ y m 

: 

ˆ y m 

= B m 

y . (1) 

Recalling that x s ( j ) denotes the predictor selected at the j th itera- 

tion of MPA, B m 

is expressed as [12] (see also the discussion in [ 5 , 

Sec. 5.3]): 

B m 

= I − A m 

, where (2) 

A m 

= 

(
I − νP s (m ) 

)
· · ·

(
I − νP s (1) 

)
, (3) 

P s ( j) = x̄ s ( j) ̄x 
� 
s ( j) 

and x̄ s ( j) = x s ( j) / || x s ( j) || for 1 ≤ j ≤ m . It can be 

shown by mathematical induction that 

A m 

= 

m ∑ 

k =0 

S m,k , where S m, 0 = I (4) 

and we have for 1 ≤ k ≤ m : 

S m,k = (−ν) k 
∑ 

m ≥ j k > j k −1 > ···> j 1 ≥1 

P s ( j k ) 
P s ( j k −1 ) 

· · · P s ( j 1 ) . (5) 

The matrix B m 

is important in evaluating the complexity of the 

linear model produced at the m th step. More precisely, the degrees 

of freedom for the fitted model are estimated by 

df m 

= tr (B m 

) . (6) 

This formula has been used, for example, in [9] . It follows 

from Stein’s theory on unbiased risk estimation [13] that for 

the case when the design matrix is fixed and the residuals are 

i.i.d. Gaussian, with zero-mean and known variance σ 2 , df = ∑ n 
j=1 Cov ( ̂  y j , y j ) /σ

2 [14,15] . It is a simple exercise to demonstrate 

that this expression equals the trace of the hat matrix (see [ 3 , 

Eq. (2.34)]). 

In practice, the user chooses an upper bound, m ub , for the num- 

ber of iterations. It is often recommended to use an IT criterion for 

selecting the best model from the m ub different models produced 

during these iterations. Because of the particularities of MPA, the 

IT criteria that have been previously derived for the classical linear 

model cannot be applied in their original form [12] . The modifica- 

tions of the criteria are discussed in Section 3 . They are based on 

the properties of the hat matrix outlined in Appendix A . 

3. Modified IT criteria 

We consider the classical linear regression problem for which 

the additive noise is i.i.d. zero-mean Gaussian, with unknown vari- 

ance. Let ˆ βγ denote the estimated vector of linear parameters for 

a model whose set of regressor variables is γ . The vector of resid- 

uals is e γ = y − ˆ y γ , where ˆ y γ is the estimate calculated by using 

ˆ βγ . We denote the cardinality of γ by | γ |, and assume that | γ | > 0. 

This means that we exclude the possibility that y is pure noise. An 
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