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a b s t r a c t 

This paper deals with the problem of composite binary hypothesis testing when an accurate parametric 

probability model is not available. Under this framework, a robust generalization of the Gaussian quasi 

score test (GQST) is developed. The proposed generalization, called measure-transformed (MT) GQST as- 

sumes a Gaussian probability model after applying a transform to the probability measure (distribution) 

of the data. The considered measure-transformation is structured by a non-negative data weighting func- 

tion, called MT-function. By proper selection of the MT-function, we show that, unlike the GQST, the pro- 

posed MT-GQST can gain resilience against heavy-tailed noise outliers, leading to significant mitigation of 

the model mismatch effect (introduced by the normality assumption), and yet, have the implementation 

advantages of the standard GQST (arising from the convenient Gaussian model). The proposed MT-GQST 

is applied for testing the vector parameters of linear and nonlinear multivariate data models. Simulation 

examples illustrate its advantages as compared to the GQST and other robust detectors. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Composite binary hypothesis testing deals with the problem of 

testing between two hypotheses that involve unknown parameters 

[1–3] . This problem is encountered in many statistical signal pro- 

cessing applications, such as signal detection, signal classification, 

model mismatch detection and spectrum sensing. Rao’s score test 

[1,3,4] is a well established tool for composite binary hypothesis 

testing, whose test-statistic is based on the score-function defined 

as the gradient of the log-likelihood function w.r.t. the vector pa- 

rameter. The main advantage of this test over the generalized like- 

lihood ratio test (GLRT) [1,3] and Wald’s test [1,3,5] , is that it does 

not involve maximum likelihood estimation under the alternative 

hypothesis, and therefore, may have a significantly easier imple- 

mentation. However, similarly to these tests it assumes complete 

knowledge of the likelihood function. In many practical scenarios 

the likelihood function is unknown, or alternatively, does not pos- 

sess a closed form expression. In these cases, alternatives to the 

score test, that require only partial statistical information, become 

highly relevant. 

The Gaussian quasi score test (GQST) [6–10] is a popular al- 

ternative of this kind that assumes normally distributed observa- 

tions, and thus, utilizes only first and second-order statistical mo- 

ments. The GQST belongs to the wide classes of M-tests [11,12] and 
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tests that are based on the generalized method of moments [13,14] . 

Its test-statistic is obtained by replacing the score-function with 

a Gaussian quasi score-function (GQSF), defined as the gradient 

(w.r.t. the vector parameter) of a Gaussian log-likelihood function 

that is characterized by the parametric mean vector and covari- 

ance matrix of the underlying distribution. The popularity of the 

GQST is attributed to its simple implementation and tractable per- 

formance analysis that arise from the convenient Gaussian model. 

Furthermore, it has an appealing consistency property under some 

mild regularity conditions [7] . However, despite these advantages, 

the GQST may be sensitive to large deviations from the normality 

assumption that can lead to poor decision performance. These de- 

viations can occur, e.g., in the case of non-Gaussian heavy-tailed 

noise that produces outliers. 

A straight-forward approach to overcome this limitation is to 

apply a non-Gaussian quasi score test (NGQST) [15–19] that as- 

sumes a more complex distributional model, e.g., elliptical, at the 

possible expense of increased implementation complexity, cum- 

bersome performance analysis, and degraded performance under 

nominal Gaussian data. For example, by assuming Laplace dis- 

tributed observations the NGQST for DC signal detection in additive 

i.i.d. noise is the well established sign detector [3,17] . The sign de- 

tector is more resilient against heavy-tailed noise outliers as com- 

pared to the GQST. However, it has relatively inferior performance 

when the noise is Gaussian [17,20] . 

In this paper, we develop a robust generalization of the GQST. 

The proposed generalization, called measure-transformed (MT) 
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GQST assumes a convenient Gaussian probability model after ap- 

plying a transform to the probability measure of the data. The con- 

sidered measure-transformation, also applied in [21–25] , is struc- 

tured by a non-negative function, called MT-function, that weights 

the data points. In practice, the MT-GQST is obtained by replac- 

ing the GQSF with a measure-transformed GQSF multiplied by the 

MT-function. The measure-transformed GQSF is defined as the gra- 

dient of a Gaussian log-likelihood function that is characterized by 

the parametric measure-transformed mean vector and covariance 

matrix. By appropriate selection of the MT-function we show that, 

unlike the GQST, the proposed MT-GQST can gain robustness to 

outliers, while maintaining the implementation advantages of the 

GQST. 

In the paper we show that the MT-GQST is consistent under 

some regularity conditions. The asymptotic distribution of the test- 

statistic is shown to be central chi-squared under the null hypoth- 

esis, and non-central chi-squared under a sequence of local alter- 

natives. Interestingly, the non-centrality parameter, that controls 

the asymptotic local power, is increasing with the inverse asymp- 

totic error-covariance of the measure-transformed Gaussian quasi 

maximum likelihood estimator (MT-GQMLE) [23] . We analyze the 

robustness of the test to outliers using a generalized version of 

the second-order influence function [26] of the test-statistic. Un- 

like the standard influence function, this generalized version in- 

volves multiple outliers. Sufficient conditions on the MT-function 

that guarantee outlier resilience are derived. In the paper we also 

show that minimization of the spectral norm of the asymptotic 

error-covariance of the MT-GQMLE amounts to maximization of a 

worst-case asymptotic local power at a fixed test-size. Hence, se- 

lection of the MT-function, within some parametric family, is car- 

ried out by minimizing the spectral norm of the empirical asymp- 

totic error-covariance of the MT-GQMLE. An approximate iterative 

solution for this minimization problem is developed that is based 

on the steepest-descend method [27] . 

The MT-GQST is applied for testing the vector parameters of 

linear and nonlinear multivariate data models in the presence 

of spherical noise. The MT-function is selected within classes of 

pseudo-Gaussian and Gaussian shaped functions that are centered 

about the origin and parameterized by a scale parameter. We show 

that the MT-GQST performs similarly to the GQST for normally dis- 

tributed noise. When the noise is non-Gaussian and heavy-tailed, 

we show that the MT-GQST outperforms the non-robust GQST and 

other robust detectors, and significantly reduces the performance 

gap towards the omniscient score test that, unlike the MT-GQST, 

requires complete knowledge of the parametric distribution. 

The basic idea behind the proposed MT-GQST was first pre- 

sented in the conference paper [25] . The contribution of the 

present paper relative to [25] includes: (1) detailed derivation of 

the MT-GQST, (2) an enhanced outliers contamination model that 

involves multiple outliers, (3) a steepest-descend based procedure 

for optimizing the measure-transformation parameters, (4) more 

complete simulation studies, and (5) rigorous proofs of the propo- 

sitions and theorem stating the properties of the test. 

The paper is organized as follows. In Sections 2 , we formu- 

late the considered composite binary hypothesis testing problem 

and review the GQST. In Section 3 , the considered probability 

measure transformation is reviewed. In Section 4 we develop the 

proposed MT-GQST. Numerical examples are given in Section 5 . 

Section 6 summarizes the main points of this contribution. Proofs 

for the theorem and propositions stated in the manuscript are pro- 

vided in the Appendix. 

2. Preliminaries 

In this section, we state the considered composite binary hy- 

pothesis testing problem. We proceed by reviewing the GQST. We 

show that the GQST is based on the principle that the Gaussian 

quasi score-function has a zero expectation under the null hypoth- 

esis. This principle will be used in Section 4 to develop the pro- 

posed MT-GQST. 

2.1. Preliminary definitions and assumptions 

We define the measure space 
(
X , S X , P X ;θ

)
, where X ⊆ C 

p is 

the observation space of a complex random vector X , S X is a σ - 

algebra over X and P X ;θ is a probability measure on S X parame- 

terized by a vector parameter θ that belongs to an open param- 

eter space � ⊆ R 

m . It is assumed that P X ;θ is absolutely continu- 

ous w.r.t. a dominating σ -finite measure ρ on S X , such that the 

Radon-Nykonym derivative [28] 

f 
(
x ; θ

)
� dP X ;θ( x ) / dρ( x ) , (1) 

exists for all θ ∈ �. The function f 
(
x ; θ

)
is called the likelihood 

function of θ observed by the vector x ∈ X . Let g : X → C denote 

an integrable scalar function on X . The expectation of g ( X ) under 

P X ;θ is defined as 

E 

[
g ( X ) ; P X ;θ

]
� 

∫ 
X 

g ( x ) dP X ;θ( x ) . (2) 

The empirical probability measure ˆ P X given a sequence of samples 

X n , n = 1 , . . . , N from P X ;θ is specified by 

ˆ P X ( A ) = 

1 

N 

N ∑ 

n =1 

δX n ( A ) , (3) 

where A ∈ S X , and δX n ( ·) is the Dirac probability measure at X n 

[28] . 

2.2. Problem statement 

Given a sequence of samples X 1 , . . . , X N from P X ;θ, we consider 

the following composite binary hypothesis testing problem: 

H 0 : θ = θ0 (4) 

H 1 : θ � = θ0 , 

where θ0 ∈ � is known. We consider the case where the under- 

lying parametric family { P X ;θ : θ ∈ �} is unknown and only partial 

statistical information is available. The GQST, reviewed in the fol- 

lowing subsection, assumes that first and second-order partial sta- 

tistical information is available through the standard mean vector 

and the covariance matrix of P X ;θ that are assumed to be known 

functions of θ. The proposed MT-GQST that will be developed in 

Section 4 exploits the mean vector and the covariance matrix un- 

der a transformed version of P X ;θ . Finally, we note that the hypoth- 

esis testing problem (4) does not involve nuisance parameters. The 

case of nuisance parameters will be treated in a followup paper. 

2.3. The Gaussian quasi score test 

Define the GQSF: 

ψ(X ; θ) � ∇ θ log φ(X ;μ(θ) , �(θ)) , (5) 

where φ( · ; · , · ) is a proper complex Gaussian probability den- 

sity function and it is assumed that μ(θ) � E[ X ; P X ;θ] and �(θ) � 

E[ XX 

H ; P X ;θ] − μ(θ) μH (θ) are differentiable. Analytical expression 

for the vector function ψ(·; ·) can be directly obtained from rela- 

tion (15.60) in [29] . By this relation and some elementary trace 

identities it follows that E 
[
ψ 

(
X ; θ

)
; P X ;θ

]
= 0 ∀ θ ∈ �, and hence, 

η(θ0 , θ) � E 

[
ψ(X ; θ0 ) ; P X ;θ

]
= 0 for θ = θ0 . (6) 

Therefore, when η(θ0 , θ) � = 0 for any θ � = θ0 an empirical estimate 

of η(θ0 , θ) can be used for testing between H 0 and H 1 . Hence, 
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