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h i g h l i g h t s

• We propose a modified multivariate weighted multiscale fractional permutation entropy.
• The complex behaviors of synthetic time series and stock markets have been successfully detected.
• Stock markets of different areas are distinguished using our method.
• The modified method allows negative information to detect deceptive cases.
• We use the idea of weighting to weaken the deception.
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a b s t r a c t

In this letter, multivariate multiscale fractional permutation entropy (MMFPE) and mul-
tivariate weighted multiscale fractional permutation entropy (MWMFPE) have been pro-
posed to provide insights for the study of time series. When measuring the dynamics of
complex systems, the MMFPE andMWMFPEmethods are sensitive to the signal evolution.
Meanwhile, they can provide some analysis of complexity over multiple time series as
well as multiple channel signals. We perform these methods on synthetic tri-variate time
series to explore some of the interesting properties, especially for negative information
and information deception. It can be seen that more complex system is more likely to
be deceptive. The amplitude information of time series which is taken into account in
the MWMFPE can weaken this deception. The methods are also employed to the closing
prices and trade volume of financial stock markets from different areas. According to the
MWMFPE results, the indices can be divided into three groups: (1) CAC40, HSI, NASDAQ,
S&P500, (2) N225, and (3) ShenCheng, implying that it has a capacity to distinguish these
financial stock market.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The study of financial systems which are regulated by their own mechanism or external environment maintains a hot
topic. Time series derived from financial systems are complex, and the entropy technology has been amore popular method
to measure the complexity of them. Entropy analysis has gone through a great improvement and successfully applied to
various fields [1–14]. Our team has done a lot of research on entropy analysis. J. Wang et al. employ multiscale entropy
to traffic time series [15]. Y. Yin et al. detect the multiscale properties of financial market dynamics based on an entropic
segmentation method [16]. H. Xiong et al. perform the weighted multifractal cross-correlation analysis based on Shannon
entropy [17]. Besides, X. Mao et al. use transfer entropy to measure multivariate time series [18] etc.
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Permutation entropy was introduced by Bandt and Pompe [5], which quantifies the degree of complexity based on the
appearance of ordinal patterns referring to the transformation in which values are replaced by their rank. In the view of
its simplicity and fast calculation, the methods based on permutation entropy have been widely used in a variety of fields,
such as life sciences [19–22], and financial markets [23,24]. There is no doubt that no model is perfect in every respect.
Hence, B. Fadlallah et al. proposed a modification to generate weighted permutation entropy by incorporating amplitude
information from the relative order structure [6]. The weighting system makes it possible to detect the abrupt changes in
the data. Contemporarily, multiscale analysis has been proposed tomake up for thewrong results due to the scale [25]. There
is anothermulti-variancemethodwhich allows us to studymultiple variables at the same time [9,18]. Combined all of them,
multivariatemultiscale permutation entropy (MMPE) andmultivariateweightedmultiscale permutation entropy (MWMPE)
are employed to measure the complexity of more complex nonlinear systems. The computing procedure of these two
methods is based on the classical Shannon entropy formula. In this letter, we extend it to the generalized fractional entropy,
proposemultivariatemultiscale Fractional order permutation entropy (MMFPE) andmultivariatemultiscale Fractional order
weighted permutation entropy (MWMFPE), and perform them to the synthetic data as well as financial time series. The
properties of fractional calculus are introduced in details in Ref. [2].

As a generalization of the formula, fractional order generalized information entropy contains Shannon entropy as a special
case. And the generalized fractional entropy has a parameter α for us to choose freely. The fractional order parameter α
aims to depict more abundant complexity information metrics of dynamical systems. Different values of parameter express
different meanings, some of them helps us to test ‘‘misleading events’’ of time series. The selection of parameter α does not
have blowing of the fit and unfit quality. Andwhen the parameterα is equal to 0, generalized fractional entropy is degenerate
into Shannon entropy. Surely, it can provide more abundant dynamical properties of complex systems. Because of a higher
sensitivity, the technology fractional calculus which is used in the generalized fractional entropy is useful to study signal
evolution of the dynamics of complex systems. Meanwhile, its existent negative information allows us to detect deceptive
cases of time series.

The remainder of the present paper has the following structure: in Section 2,we elaborate themethodology in quantifying
the complexity of time series and propose the MMFPE and MWMFPE. Section 3 presents the simulation results, and Section
4 depicts the empirical results. Finally, we conclude our results in Section 5.

2. Methodology

2.1. Multiscale fractional order weighted permutation entropy

For a given discrete time series {xi}Ni=1, it should be coarse-grained first. We construct the multiple coarse-grained time
series as follows: choose one scale factor s and average the data points within non-overlapping windows of length s. Then,
the coarse-grained time series are composed of the following equation:

y(s)j =
1
s

js∑
i=(j−1)s+1

xi (1)

Here, we have 1 ≤ j ≤ N/s, and the length of coarse-grained time series is equal to the length of original time series divided
by s. It is emphasized that using non-overlapping scales to see the multiscale properties can only be applicable to data with
long length. The multiscale fractional order permutation entropy (MFPE) of coarse-grained time series with different scale
factor s can be calculated.

The next step is that for a coarse-grained time series
{
yj

}M
j=1, when choosing a embedding dimension d and time delay

τ , we have its time-delay embedding representation Y d,τ
k =
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}
for k = 1, 2, . . . ,M − (d − 1) τ . To

computeMFPE, these T = M−(d − 1) τ sub-vectors are assigned amotif among all unique orderings of d different numbers,
that is, d! possible ones. Apply the following formula, we define the MFPE as the fractional order entropy:
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where Γ (·) and ψ (·) represent the gamma and digamma functions and
{
π

d,τ
l

}d!

l=1
is the d! distinct symbols. Note that

expression (2) fails to obey some of the Khinchin axiomswith exception of the case α = 0 that leads to the classical Shannon
entropy [2].
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