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h i g h l i g h t s

• Formula for ground and first-excited state energies of Random Energy Models.
• First order quantum phase transition rigorously established.
• Ensemble averaged gap has finite values.
• Non-adiabtic annealing algorithm may have some chances.
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a b s t r a c t

By using a previously established exact characterization of the ground state of random
potential systems in the thermodynamic limit, we determine the ground and first excited
energy levels of quantum random energy models, discrete and continuous. We rigorously
establish the existence of a universal first order quantum phase transition, obeyed by
both the ground and the first excited states. The presence of an exponentially vanishing
minimal gap at the transition is general but, quite interestingly, the gap averaged over
the realizations of the random potential is finite. This fact leaves still open the chance for
some effective quantumannealing algorithm, not necessarily based on a quantumadiabatic
scheme.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The perspective to realize a physical device representing a quantum computer (QC) has motivated a fervent research
activity concerning the algorithms that could best exploit the intrinsic quantum properties of such a machine as opposed
to the classical ones of current computers. In particular, there has been a growing interest toward the possibility to use
quantum annealing (QAn) [1–3] as an alternative to simulated thermal annealing [4]. A pictorial viewpoint in fact suggests
that in order to get the ground state (GS) of a given classical Hamiltonian V , the thermal fluctuations, introduced to avoid
the system to be trapped in local minima, could be replaced by quantum fluctuations able to outperform the former due
to tunneling effects. Usually, QAn is associated with quantum adiabatic (QAd) algorithms [5–7]. The idea is to implement
an interpolating Hamiltonian H(Γ ) = V + Γ K , where K is an operator which does not commute with V . The adiabatic
theorem ensures that for sufficiently slow changes of the parameter Γ the interpolating system remains in its GS so that
the original GS of V can be recovered in the limit Γ → 0. However, for many interesting problems V , the interpolating
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Hamiltonian H(Γ ) is likely to undergo a first order quantum phase transition at some value Γ = Γc, where the energy gap
∆ between the first excited state (FES) and the GS becomes exponentially small in the system size N [8–10]. In this case, a
QAd decrease of Γ starting from some value Γ > Γc, where the GS of H(Γ ) is found with ease, requires an exponentially
long time. Otherwise, the system evolves into a combination of several instantaneous eigenstates ofH(Γ ) and when Γ → 0
there is a finite probability to attain a state of V different from its GS. For V with a glassy energy landscape, ‘‘quantum is
better’’ may be untrue [11].

The aim is this paper is threefold, we show that: (i) this phase transition scenario, characterized by a normal (param-
agnetic) phase, for Γ > Γc, and a condensed phase, for Γ < Γc, is in fact universal, being valid for any hopping operator
K and any potential operator V ; (ii) in the case of random potentials, where one must perform a quenched average over
the different realizations of V , or, instances, the average of the GS energy determines Γc (see Eq. (2)), the average of the gap
remains finite and,with respect toΓ , is constant in the condensed phase, and linear in the normal phase; (iii) for any instance
there exists a value Γmin where the gap is exponentially small with the system size N , and Γmin → Γc for N → ∞. All the
theoretical analysis is supported by unbiased numerical simulations. In the conclusions we shortly discuss the implications
of points (i)–(iii) which make impossible to realize an efficient quantum adiabatic algorithm, but still leave open the chance
for some effective more complicated quantum annealing scheme [12].

We analyze the case in which V is a generic random potential with a discrete or continuous distribution of the levels. For
any choice of K , provided that K has zero diagonal elements in the representation in which V is diagonal, H(Γ ) = V + Γ K
is a quantum random energy model (QREM) belonging to the class of systems studied in [13]. The term QREM refers to the
quantum counterpart of the classical random energy model (REM), the model defined without the ‘‘hopping’’ operator K ,
namely, H = V . In its original version, the REM was proposed with V having Gaussian distributed levels and represents a
well known toy model for spin glasses [14]. The corresponding QREM has been first studied perturbatively and numerically
in [8].

In Ref. [13]we have exactly characterized theGS and found a sufficient condition for the existence of a first order quantum
phase transition for systems in which V is an arbitrary random potential. Here, we extend these results to study in detail
both the GS and the FES energies of a generic QREM.

2. Ground state of random potential systems

In [13] we have determined the exact GS of a class of Hamiltonian models defined by an arbitrary hopping operator K ,
i.e., an off diagonal matrix of dimension M , and a random potential V , i.e., a diagonal matrix with M i.i.d. random values
V extracted according to an arbitrary probability distribution P(V ). As usual, we will denote the system corresponding to a
particular realization of the V values as an instance and E(·) =

∫
· P(V )dV will stand for the expectation over all possible

instances. For the mentioned class of models, in the thermodynamic limit the energy E0 of the GS is related to the lowest level
E(0)
0 of the hopping operator by∫

P(V )
E0 − V

dV =
1

E(0)
0

, E0 ≤ E(V(1)), (1)

where E(V(k)) is the expectation of the kth order statistic associated with the distribution P(V ), i.e., the expectation of the
kth smallest value among the M values of V drawn according to P(V ) [15]. Note that, whereas E(0)

0 is deterministic, E0 is
stochastic and Eq. (1) is actually an equation for the expectation E(E0). However, we assume that E0 is self-averaging and
this justifies the above notation.

The derivation of Eq. (1) follows from an exact probabilistic representation of the time evolution of a quantum system
in terms of a proper collection of independent Poisson processes [16–18]. In fact, by using this representation, the lowest
eigenvalue of H = V + Γ K can be expressed as the solution of a scalar equation written in terms of the asymptotic
probability density of the potential and hopping frequencies (frequencies of the values ofV andK realized in the probabilistic
representation of an infinitely long time evolution) [13]. It happens that, for the above mentioned class of systems with a
randompotential, aswell as for the uniformly fully connectedmodels, in the thermodynamic limit the asymptotic probability
density of the potential and hopping frequencies is exactly given by a multinomial. The equation for the ground-state level
of H then greatly simplifies and, in the thermodynamic limit, takes on the form of Eq. (1) [13]. We assume a non-trivial
thermodynamic limit, namely, a limit in which the lowest levels of H , V and K diverge with the same speed (the most
interesting case being the one in which such levels are all extensive in N). Apart from this, the distribution P(V ) remains
completely arbitrary.

Eq. (1) has a simple interpretation: the average of the inverse hopping energy, estimated as 1/(E0 − V ), must coincide
with the inverse of the actual hopping energy, namely, 1/E(0)

0 , with the constraint that E0 does not exceed the averaged
minimum potential. It may happen that the solution of the integral problem in Eq. (1) becomes incompatible with the
constraint E0 ≤ E(V(1)). This may occur, for instance, when some parameter of the model is changed below a threshold,
e.g., Γ < Γc for the Hamiltonian H(Γ ) = Γ K + V . Then, the GS of an instance condensates, for Γ < Γc, into the eigenstate
of V corresponding to the minimum value V realized in that instance. As a result, E0(Γ ) = E(V(1)) for any Γ < Γc and we
obtain a condensation in the space of states [19]. Note that each instance condensates into a different state, however, this
state corresponds, for all instances, to that of minimum potential. A sufficient condition for this first order quantum phase
transition to take place is that P(E(V(1))) → 0 in the thermodynamic limit [13].
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