Author's Accepted Manuscript

Short Crack Growth Behavior and its Transitional Interaction with 3D Microstructure in Ti-6Al-4V

M. Hassanipour, S. Watanabe, K. Hirayama, H. Toda, K. Uesugi, A. Takeuchi

www.elsevier.com/locate/msea

PII: S0921-5093(18)31279-6

DOI: https://doi.org/10.1016/j.msea.2018.09.073

Reference: MSA36954

To appear in: Materials Science & Engineering A

Received date: 29 June 2018

Revised date: 19 September 2018 Accepted date: 20 September 2018

Cite this article as: M. Hassanipour, S. Watanabe, K. Hirayama, H. Toda, K. Uesugi and A. Takeuchi, Short Crack Growth Behavior and its Transitional Interaction with 3D Microstructure in Ti-6Al-4V, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2018.09.073

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Short Crack Growth Behavior and its Transitional Interaction with 3D

Microstructure in Ti-6Al-4V

M. Hassanipour ^a, S. Watanabe ^a, K. Hirayama ^a, H. Toda ^a, K. Uesugi ^b, A. Takeuchi ^b

Currently, short crack growth behavior and rate variations are not well understood in the literature. This is due to lack of studies regarding the interaction between 3D short crack and microstructure and its effect on crack growth. In order to study this interaction, in situ computed tomography was performed to measure crack growth at sub-grain level (every $5\mu m$) during a fatigue test in a bimodal Ti-6Al-4V alloy for two crack front regions. This was followed by serial sectioning coupled with electron backscattering diffraction (EBSD) to identify the short crack growth in the microstructure, i.e. α , $\alpha+\beta$ phases and interface. Results show that crack growth has the highest rate in α phase as compared to the $\alpha+\beta$ phase and the interface in both regions. The crack grows preferably into α phase when compared to the average microstructural fraction in the first region, but it decreases below this fraction in the second region. The crack grows mainly close to crystallographic planes in α grains with the maximum shear stress (favorable planes) in the first region. As the short crack grows into the second region, there is an increase in number of grains enclosed in the plastic zone size. As a result, there is a decrease in the mismatch angle between neighboring cracked grains, which leads to higher deviation from favorable planes causing a local variation in crack growth rate.

Key Words: Short crack propagation, Ti-6Al-4V, Synchrotron radiation, Tomography, Crystallographic orientations, Electron backscatter diffraction

Nomenclature

ND	normal direction	D	distance along crack front line at the last cycle
TD	transverse direction	$\Delta \mathbf{a}$	crack length
RD	rolling direction	$\Delta\theta$	image slice angle of crack in xy plane
α	grains with primary alpha phase	α+β	grains with alpha and beta phase
$\alpha/\alpha+\beta$	interface between $~\alpha$ and $\alpha+~\beta$	da/dN	crack growth rate
CRSS	critical resolved shear stress with the highest Schmid factor	ϕ_{ave}	average crack plane mismatch angle with the neighbouring cracked grains
Sch _{max}	Maximum Schmid factor	Ψ	deviation from crystallographic plane with the highest Schmid factor

1. Introduction

Small defects are inevitably formed during the fabrication process in many engineering components such as aircraft blisks made of Ti-6Al-4V. As the cyclic loads are applied, these small defects or cracks start to propagate with high variations in growth rates. These variations are caused by the three dimensional (3D) variation in the microstructural features, i.e. crystallographic orientations, and the morphology of the grains on the surface and inside the material [1,2].

^a Department of Mechanical Engineering, Kyushu University, 744, Motooka, Nishi Ward, Fukuoka, Fukuoka 819-0395, Japan

^b Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo Cho, Sayo Gun, Hyogo 679-5148, Japan

Download English Version:

https://daneshyari.com/en/article/11001649

Download Persian Version:

https://daneshyari.com/article/11001649

<u>Daneshyari.com</u>