Accepted Manuscript

Nitrogen-doped double-layer graphite supported CuCo₂S₄ electrode for highperformance asymmetric supercapacitors

Liang Chen, Rui Lin, Chao Yan

PII: S0167-577X(18)31542-8

DOI: https://doi.org/10.1016/j.matlet.2018.09.153

Reference: MLBLUE 25021

To appear in: Materials Letters

Received Date: 7 August 2018
Revised Date: 22 September 2018
Accepted Date: 28 September 2018

Please cite this article as: L. Chen, R. Lin, C. Yan, Nitrogen-doped double-layer graphite supported CuCo₂S₄ electrode for high-performance asymmetric supercapacitors, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.09.153

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nitrogen-doped double-layer graphite supported CuCo₂S₄ electrode for high-performance

asymmetric supercapacitors

Liang Chen a, Rui Lin a, Chao Yan b*

^a School of Automotive Studies, Tongji University, Shanghai 201804, China

^b School of Materials Science and Engineering, Jiangsu University of Science and Technology, Jiangsu, Zhenjiang

212003, China

Corresponding author.

E-mail address: chaoyan@just.edu.cn (C. Yan)

Abstract

CuCo₂S₄ synthesized on the nitrogen-doped double-layer graphite (NDG) inter-layer revealed more uniform

and smaller size than synthesized directly on Ni foam. From electrochemical measurements, the specific

capacitance of CuCo₂S₄@NDG electrode was 1244 F g⁻¹ at a current density of 50 A g⁻¹, which was twice higher

than the CuCo₂S₄@Ni electrode. In addition, the reduced graphene oxide (rGO) was used to assemble

CuCo₂S₄@NDG//rGO asymmetric supercapacitor, revealing a high energy density (58.4 W h kg⁻¹) for practical

applications. Significantly, the NDG inter-layer improved the properties of asymmetric supercapacitor at high-rate

and high energy density conditions effectively.

Keywords: Energy storage and conversion; Supercapacitor; CuCo₂S₄; Graphite; Inter-layer; Composite materials

Introduction

Although supercapacitors exhibit superior power density and long-term stability, their further applications are

still limited by lower energy density than that of batteries. So far, numerous efforts have been devoted to enhance

energy density [1,2], and these strategies were closely related to the properties of electrode materials [3-5].

However, seldom researches focus on the effect of inter-layer, which locate between the current collector and

Download English Version:

https://daneshyari.com/en/article/11001660

Download Persian Version:

https://daneshyari.com/article/11001660

<u>Daneshyari.com</u>