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A Rayleigh–Schrödinger many-body perturbation theory (MBPT) approach is introduced by making 
use of a particle-number-breaking Bogoliubov reference state to tackle (near-)degenerate open-shell 
fermionic systems. By choosing a reference state that solves the Hartree–Fock–Bogoliubov variational 
problem, the approach reduces to the well-tested Møller–Plesset, i.e., Hartree–Fock based, MBPT when 
applied to closed-shell systems. Due to its algorithmic simplicity, the newly developed framework 
provides a computationally simple yet accurate alternative to state-of-the-art non-perturbative many-
body approaches. At the price of working in the quasi-particle basis associated with a single-particle 
basis of sufficient size, the computational scaling of the method is independent of the particle number. 
This paper presents the first realistic applications of the method ranging from the oxygen to the nickel 
isotopic chains on the basis of a modern nuclear Hamiltonian derived from chiral effective field theory.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Over the past two decades the ab initio description of nuclear 
structure properties has extended significantly both with respect 
to accessible mass numbers and to the open-shell character of 
the targeted system. Simplest approaches applicable to closed-shell 
systems start from a single-determinantal, e.g., Hartree–Fock (HF), 
reference state and account for dynamic correlations via the inclu-
sion of particle–hole excitations on top of it. In this context, a 
plethora of many-body frameworks have been developed to de-
scribe medium-mass systems, e.g., many-body perturbation the-
ory (MBPT) [1–3], coupled-cluster (CC) theory [4–8], self-consistent 
Green’s functions (SCGF) theory [9–11] or the in-medium similar-
ity renormalization group (IMSRG) approach [12–15]. For doubly 
closed-shell nuclei, all of these methods agree well with quasi-
exact no-core shell model (NCSM) calculations for ground-state 
energies of nuclei in the A ∼ 20 regime [16].

However, when going away from nuclear shell closures, the 
single-determinantal description becomes qualitatively wrong be-
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cause several determinants contribute strongly to a configuration 
interaction (CI) expansion, requiring a proper treatment of static 
correlations. In order to overcome this drawback, more general 
reference states are required, i.e., either multi-determinantal or 
symmetry-broken reference states. The latter were first used in 
nuclear structure through the Gorkov extension of SCGF (GSCGF) 
that relies on a particle-number-broken Hartree–Fock–Bogoliubov 
(HFB) vacuum to describe singly-open-shell nuclei [17,18]. A sim-
ilar extension led to designing the Bogoliubov CC formalism, al-
though only proof-of-principle calculations limited to small model 
spaces and two-body forces have actually been performed so 
far [19]. In parallel, multi-determinantal reference states were suc-
cessfully applied in the multi-reference extension of the IMSRG 
(MR-IMSRG) [20]. The first MR-IMSRG applications used particle-
number-projected (PNP) HFB states [16,20,21]. More recently, so-
lutions of no-core shell model (NCSM) calculations [22–24] in 
a small model space were employed, leading to the so-called 
in-medium no-core shell model (IM-NCSM) [25], and proof-of-
principle calculations with angular-momentum projected HFB 
states were presented in [26]. With the revival of perturbative 
techniques in nuclear structure theory [1,2] the concept of multi-
determinantal reference states inspired the development of a MBPT 
variant based on a NCSM reference state in a small model space, 
yielding the perturbatively-improved no-core shell model (NCSM-
PT). This method has allowed the first description of medium-mass 
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nuclei with even and odd mass numbers on an equal footing [3]. 
In general the use of a perturbative framework is computationally 
advantageous since it obviates the storage of large tensors like, e.g., 
cluster amplitudes in CC theory or the flowing Hamiltonian in IM-
SRG, and, furthermore, does not require a solution of a numerically 
more challenging non-linear set of equations.

Even though pioneering work based on symmetry-broken refer-
ence states was done within the GSCGF framework, similar ideas 
have scarcely been employed in ab initio calculations. One reason 
is that symmetry breaking cannot occur in finite quantum systems, 
hence the explicitly broken symmetry must eventually be restored, 
which has been a long-standing challenge already on a formal 
level. While the design of a proper symmetry-restoration protocol 
remains yet to be formulated within the GSCGF framework, full-
fledged symmetry-broken and -restored MBPT and CC formalisms 
have been recently designed to consistently restore the symme-
try at any truncation order [27,28]. The spin-projected CC version 
of this formalism [27] has been transferred and implemented suc-
cessfully on the Hubbard model and on molecule dissociation [29].

While the full details of the newly derived Bogoliubov many-
body perturbation theory (BMBPT) formalism will be described in 
a forthcoming publication [30], its first full-fledged implementa-
tion in large model spaces with an approximate inclusion of three-
body forces via normal-ordering techniques is presented in this let-
ter. We investigate ground-state energies along complete medium-
mass isotopic chains with further emphasis on two-neutron sep-
aration energies to monitor footprints of nuclear shell closures. 
Whenever possible, BMBPT calculations are benchmarked against 
well-established non-perturbative IT-NCSM, GSCGF, and MR-IMSRG 
results for the same input Hamiltonian.

2. Many-body formalism

Bogoliubov MBPT is an expansion of the exact A-body ground-
state energy in perturbations around a (possibly) symmetry-
breaking reference state. In semi-magic nuclei, the relevant sym-
metry is the U (1) global gauge symmetry associated with particle 
number conservation. Breaking U (1) symmetry permits to effi-
ciently deal with Cooper pair’s instability associated with the su-
perfluid character of open-shell nuclei. The degeneracy of a Slater 
determinant with respect to particle–hole excitations is lifted via 
the use of a Bogoliubov reference state and commuted into a de-
generacy with respect to symmetry transformations of the group. 
As a consequence, the ill-defined (i.e. singular) expansion of ex-
act quantities with respect to a Slater determinant is replaced by 
a well-behaved one.1

Eventually, the degeneracy with respect to U (1) transforma-
tions must also be lifted by restoring the symmetry. However, 
BMBPT only restores the symmetry in the limit of an all-order re-
summation, and, therefore retains a symmetry contamination at 
any finite order. While BMBPT is presently used as a stand-alone 
approach it eventually provides the first step towards the imple-
mentation of the particle-number projected BMBPT (PNP-BMBPT) 
which exactly restores good particle number at any truncation or-
der [28]. While the present focus is on BMBPT, the next step will 
consist of implementing PNP-BMBPT.

The formalism is based on the introduction of the Bogoliubov 
reference state

|�〉 ≡ C
∏

k

βk|0〉 , (1)

1 Extending the treatment to doubly open-shell nuclei also requires a treatment 
of the SU (2) symmetry associated with the conservation of angular momentum.

where C is a complex normalization constant and |0〉 denotes the 
physical vacuum. The Bogoliubov state is a vacuum for the quasi-
particle operators β†

k , βk that are obtained from the creation and 
annihilation operators of our chosen single-particle basis via the 
transformation

βk ≡
∑

p

U∗
pkcp + V ∗

pkc†
p , (2a)

β
†
k ≡

∑
p

U pkc†
p + V pkcp . (2b)

While other choices are possible [30], |�〉 is presently obtained 
by solving the Hartree–Fock–Bogoliubov variational problem. The 
transformation matrices (U , V ) consist of the eigenvectors of the 
HFB eigenvalue equation [31], and the quasi-particle energies 
{Ek > 0} are the corresponding eigenvalues. This fixes the refer-
ence state and corresponds to the Møller–Plesset implementation 
of the otherwise more general Rayleigh–Schrödinger BMBPT for-
malism. We note that only like-particle pairing is included at the 
HFB level and, thus, proton–neutron pairing is absent from the for-
malism.

While the HFB reference state is not an eigenstate of the 
particle-number operator2 A, the expectation value of A is con-
strained to match the number of particles A0 of the targeted sys-
tem. It is enforced in the HFB iteration via the use of a Lagrange 
multiplier λ in the minimization of the grand potential � ≡ H −λA
expectation value. In actual applications, separate Lagrange mul-
tipliers are used to constrain proton and neutron numbers sepa-
rately.

In the next step, the grand potential � is normal ordered with 
respect to the HFB reference state

� =
�[0]︷︸︸︷
�00 +

�[2]︷ ︸︸ ︷
�20 + �11 + �02

+ �40 + �31 + �22 + �13 + �04︸ ︷︷ ︸
�[4]

, (3)

where �i j denotes the normal-ordered component involving i ( j) 
quasi-particle creation (annihilation) operators, e.g.,

�31 ≡ 1

3!
∑

k1k2k3k4

�31
k1k2k3k4

β
†
k1

β
†
k2

β
†
k3

βk4 . (4)

Thus, �00 is the expectation value of � in |�〉, �[2] is an effec-
tive, i.e., normal-ordered, one-body operator and �[4] is an ef-
fective two-body one. Working in the normal-ordered two-body 
approximation (NO2B) [32] in the quasi-particle representation,3

the residual three-body part �[6] is presently discarded. Details on 
the normal-ordering procedure as well as expressions of the ma-
trix elements of each operator �i j in terms of the original matrix 
elements of the Hamiltonian and of the (U , V ) matrices can be 
found in Ref. [19].

To set up the perturbation theory, the Hamiltonian (i.e. grand 
potential) must be partitioned into an one-body unperturbed part 
�0 and a residual part �1, i.e.,

� = �0 + �1 . (5)

2 In practice the constraint has to be done for neutron and proton-number oper-
ators N and Z , respectively by introducing two separate chemical potentials λN and 
λZ . In our formalism A stands for either one of them.

3 We emphasize that the NO2B approximation does not break particle number 
itself, i.e., the truncated grand potential does commute with A.
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