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A novel complementary variables formulation, permits the obtainment of invariants of a mechanical 
system following the rationale of Abel’s differential equation identity. This approach allows for the 
decomposition of the total energy of the system into the energy of the object and the dynamic energy of 
the field. The force acting on the object must be linear in the spatial variable but is arbitrary in the time 
variable. Several examples, such as the time dependent harmonic oscillator and a swing are described 
with this complementary variables formulation. The exact solution for the energy of a Lorentz pendulum 
with uniformly varying length is presented.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The time dependent harmonic oscillator (TDHO) has an ubiqui-
tous role in many areas of physics, ranging from particle accel-
erators dynamics [1] to geodesic equations [2]. Radio frequency 
ion traps or Paul traps are described by an electric quadrupole 
potential with sinusoidal time modulation. The Mathiew differen-
tial equation describes this time periodic potential and has been 
extensively studied in Floquet theory. More recently, atomic stabi-
lization in superintense laser fields has led to two forms of atomic 
stabilization, quasistationary (adiabatic) and dynamic stabilization 
depending on the laser pulse temporal shape [3]. These schemes 
ultimately depend on the way the time varying parameter is ap-
proximated in the TDHO equation.

The archetypal macroscopic classical mechanical system with 
a time dependent linear restoring force is the simple pendulum 
with mass reconfiguration in the small angle approximation [4]. 
Although similar systems, the pendulum with varying length (self-
excited) and a pendulum with varying support (parametrically 
forced pendulum) exhibit different dynamics even within the per-
turbation regime [5]. The pumping of a swing has been described 
using these models, not always leading to consistent results. En-
ergy transfer between the oscillator and the time dependent field 
is often dealt with qualitative arguments due to the lack of a rig-
orous formalism.
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In the microscopic domain, at the outset of quantum theory, the 
time dependent harmonic oscillator became all important in order 
to establish the quantization condition. It was evoked by Henrik 
Lorentz at the first Solvay conference in 1911, when he posed the 
problem of a shortening pendulum [6, p. 450]. Two replies were 
given on that occasion 106 years ago, one by Einstein regarding 
the adiabatic limit studied by Ehrenfest [7] and the other by War-
burg who evoked the abrupt regime undertaken by Galileo. The 
energy of an atomic ensemble under adiabatic changes was care-
fully assessed by Ehrenfest and was shown to be consistent with 
quantum theory [8]. The theory of adiabatic invariants, first devel-
oped in statistical and classical mechanics [9,10], was thereafter 
extended to other areas of physics such as light pulses with slowly 
varying amplitude envelope. Oddly enough, the name adiabatic 
was coined in thermodynamics referring to systems without heat 
transfer. Nonetheless, the way it is used in other fields of physics 
corresponds to the quasi-static approximation in thermodynamics. 
A mechanical system with a time dependent force in the oppo-
site limit of abrupt parameter change, was discussed by Galileo 
while describing ‘naturally accelerated motion’ [11,12]. The intu-
itive ideas of energy and constants of motion were introduced at 
the time, by establishing the constant height which the pendulum 
bob achieves while varying the length in discrete steps.

The major difficulty to be solved in mechanical systems with 
explicitly time dependent forces, is to establish the energy trans-
fer between the object and the field. A related problem is finding 
an invariant proportional to the total energy of the oscillator-field 
system. The underlying trouble being that it can no longer be 
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ascertained that the time dependent Hamiltonian represents the 
oscillator’s energy [13].

In the present paper, a quantity similar to the Wronskian is 
obtained in section 2 from a second order ordinary differential 
equation and its derivative. The invariant arising from this com-
plementary variables procedure is related to the total energy of 
the system. The energy transfer between the oscillator and the 
time dependent field is obtained from one of the additive terms in 
the invariant expression. Another conserved quantity using a dif-
ferent pair of complementary variables, derived in section 3, is the 
Ermakov exact invariant [14,15]. This constant permits the decou-
pling of the amplitude and phase differential equations as shown 
in section 4. Several examples are analyzed in section 5 to exhibit 
the capabilities of the formalism. Subsection 5.4 presents the exact 
solution to the simple pendulum with uniformly varying length. 
The interplay between physics and mathematics is decisive in or-
der to establish the appropriate invariants and attribute a physical 
meaning to the different terms.

2. Energy invariant

Consider the non autonomous second order ordinary differen-
tial equation with linear restoring force (LRF)

mẍ + κx = 0, (1)

where m is the object’s constant mass, x describes its position 
in one spatial dimension, the dots represent differentiation with 
respect to time and −κx is the restoring force. The system is re-
quired to be linear in the spatial domain. In particular, the force 
is linear in the spatial coordinate but the stiffness coefficient κ
is allowed to have an arbitrary time dependence κ = κ (t). We 
refer to this equation with the prototypical name as the time de-
pendent harmonic oscillator equation. The time dependent potential 
is V = 1

2 κx2. A differential equation with a first order deriva-
tive term hẋ, can always be eliminated via the transformation 
x �→ xt exp[−1/2 

∫
hdt]. Therefore, Eq. (1) encompasses the general 

case. This equation is sometimes written in the literature as

ẍ + �2x = 0, (2)

where �2 (t) is the time dependent parameter. The dependence of 
this restoring parameter in terms of other variables depends on 
the physical system, for example, for the lengthening pendulum 
�2 (t) = g

l(t) . Evaluate the derivative of the TDHO equation

m
...
x + κ ẋ + κ̇x = 0,

that may be written, using the TDHO equation as

m
...
x − m

κ̇

κ
ẍ + κ ẋ = 0.

Let v = ẋ represent the velocity function, the above equation is 
then

mv̈ − m
κ̇

κ
v̇ + κv = 0. (3)

This is a TDHO type equation but with an extra term involving a 
first derivative. Although the first derivative could be avoided with 
the transformation v → vt

√
κ , it will prove better to retain this 

term.
The coordinate variable is associated with potential energy 

whereas the velocity variable is associated with kinetic energy. The 
position second order ordinary differential equation (ODE) (1) is 
then related to the evolution of the potential energy of the sys-
tem, whereas the velocity second order differential equation (3) is 

related to the evolution of the system’s kinetic energy. Provided 
that the system is closed, the total energy must be the sum of 
these two forms of energy. It is in this sense, that the position and 
velocity variables are complementary. A similar notion between 
complementary fields has been developed in field theory [16]. Fur-
thermore, we expect the total energy to be conserved, thus, the 
energy of the system must be the same at all times. Therefore, we 
seek an appropriate combination of these two equations in such a 
way that an expression in terms of a total time derivative is ob-
tained. The following procedure renders the required solution.

2nd order ODEs invariant obtention algorithm:
Given two second order ordinary differential equations, evaluate the 

product of the solution of one of them times the other differential equa-
tion and viceversa. Take the difference between the two expressions. An 
invariant is obtained from integration of this result.

This procedure applied to two solutions of the same second or-
der ODE without first derivative term gives the usual Wronskian 
expression. If a first order derivative term exists, Abel’s differential 
equation identity is recovered. However, in the present approach, 
the ODE’s are different in general, thus there is no need to con-
sider two linearly independent solutions of the same equation but 
merely a solution to each of them, possibly the general solution. 
Invariants obtained by the Sarlet–Bahar method [17,18] can also 
be derived with this procedure together with the appropriate non-
linear transformations.

Evaluate the 2ODEs invariant algorithm beginning with equa-
tions (1) and (3), that correspond to the position and velocity 
variables. For each differential equation, take the product with the 
solution to the other equation, i.e. v times Eq. (1)

mvẍ + κvx = 0, (4a)

and x times Eq. (3)

mxv̈ − m
κ̇

κ
xv̇ + κxv = 0. (4b)

The difference between these two equations1 is

m
d

dt
(vẋ − v̇x) + m

κ̇

κ
xv̇ = 0,

where the second derivatives were rewritten using the identity 
vẍ − xv̈ = d

dt (vẋ − v̇x). This equation is integrated to give the in-
variant

Q 10 = m (vẋ − v̇x) +
∫

m
κ̇

κ
xv̇dt.

The invariant’s subindices indicate the order of the derivative in 
each variable. Q 10 implies that v is a first order derivative of the 
solution and x a zeroth order derivative. Since v̇ = ẍ = − κ

m x, this 
invariant can be written as

Q 10 = mv2 + κx2 −
∫

κ̇x2dt = 2T + 2V −
∫

κ̇x2dt. (5)

The first two terms are readily recognized to be twice the sum of 
the kinetic and potential energies of the object. If we abide to the 
convention for energy with the 1

2 factor,

E = 1

2
Q 10 = 1

2
mẋ2︸ ︷︷ ︸
Ek

+ 1

2
κx2︸ ︷︷ ︸
Ep

−1

2

∫
κ̇x2dt︸ ︷︷ ︸

Edf

. (6)

1 Whether the difference (4a)–(4b) is evaluated or the other way around is a mat-
ter of convention. We have chosen to subtract (4b) from (4a) to obtain a positive 
kinetic energy later in the derivation.
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