
Physics Letters A 382 (2018) 3287–3292

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Topological phase transition in the quasiperiodic disordered 

Su–Schriffer–Heeger chain

Tong Liu, Hao Guo ∗

Department of Physics, Southeast University, Nanjing 211189, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 May 2018
Received in revised form 17 September 
2018
Accepted 19 September 2018
Available online 20 September 2018
Communicated by V.A. Markel

Keywords:
Disorder
Topological phase transition
Mobility edges
Su–Schriffer–Heeger chain

We study the stability of the topological phase in one-dimensional Su–Schrieffer–Heeger chain subject to 
the quasiperiodic hopping disorder. Two different hopping disorder configurations are investigated, one 
is the Aubry–André quasiperiodic disorder without mobility edges and the other is the slowly varying 
quasiperiodic disorder with mobility edges. Interestingly, we find topological phase transitions occur at 
the critical quasiperiodic disorder strengths which have an exact linear relation with the dimerization 
strengths for both disorder configurations. We further investigate the localized property of the Su–
Schrieffer–Heeger chain with the slowly varying quasiperiodic disorder, and identify that there exist 
mobility edges in the spectrum when the dimerization strength is unequal to 1. These interesting features 
of models will shed light on the study of interplay between topological and disordered systems.

© 2018 Published by Elsevier B.V.

1. Introduction

Topological insulators [1–4] (TIs), a unique class of electronic 
materials, have not only a bulk gap but also symmetry-protected 
gapless states localized at the sample boundaries. Topological fea-
tures of TIs are expected to be immune to perturbations of the 
fluctuation and the environmental noise, and thereby have great 
potential applications in quantum information processing. Since 
the effect of disorder is inevitable in real materials, physical prop-
erties of topological systems in the presence of disorder have 
drawn considerable attention in the past decades [5–8]. The com-
bination of topology and disorder can induce rich novel quantum 
phenomenons. For weak disorder, the robustness of topological 
states has been demonstrated for various topological systems, es-
pecially the quantum spin Hall states [9]. With the increase of the 
disorder strength, the transition from topological phase to topolog-
ically trivial phase can occur. Besides destroying topological states, 
the medium strength disorder can induce the so called topological 
Anderson insulator [10–14] (TAI), i.e., a topologically trivial state is 
driven into a topological state by disorder.

However, the direct observation of the influence of disorder 
on TIs is difficult due to the difficulty to precisely control the 
disorder in solid-state experiments. Benefited from the develop-
ment in the manipulation of ultracold atoms, exploring both dis-
order and topology via the quantum simulation in artificial sys-
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tems has become exercisable. In one-dimensional (1D) system 
the topological/trivial feature of an insulator is completely deter-
mined by the presence/absence of the chiral symmetry. The Su–
Schrieffer–Heeger (SSH) model [15–18] is one of the most sim-
ple and widely studied models belonging to the BDI symmetry 
class, which hosts two topologically distinguishable phases char-
acterized by the winding number. Using a combination of Bloch 
oscillations and Ramsey interferometry, Ref. [19] measures the Zak 
phase to study the topological feature of Bloch bands in a dimer-
ized optical lattice described by 1D SSH model. A very recent 
work [20], in which a 1D chiral symmetric SSH chain with con-
trollable off-diagonal (hopping) disorder is synthesized based on 
the laser-driven ultracold atoms [21], systematically explores the 
disorder effect on topology. They observe the robustness of topo-
logical state immune to weak random hopping disorder, and also 
the topologically non-trivial to trivial transition at very strong hop-
ping disorder. More interestingly, they find the TAI phase in which 
the band structure of a topologically trivial chain is driven to a 
non-trivial one by adding the random hopping disorder.

On the other hand, the bichromatic optical lattices [22–24] with 
incommensurate wavelengths have also attracted enormous atten-
tion in the study of Anderson localization. A notable work experi-
mentally investigates the localization property of 1D Aubry-André 
(AA) model [25] by use of ultracold atoms in the incommensu-
rate/quasiperiodic optical lattice [26]. The AA model has a self-dual 
symmetry and can undergo a sharp localization transition at the 
self-dual point without mobility edges. There also exists a class of 
systems with slowly varying quasiperiodic disorder which can host 
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Fig. 1. (Color online.) Schematics of 1D SSH chain with the displacement ui . The 
system consists of two sublattices indicated by red and blue filled circles respec-
tively. Hopping amplitudes are staggered by t1 (red dashed line) and t2 (blue solid 
line).

mobility edges [27,28]. Motivated by the highly precise control in 
these ultracold atomic experiments, an interesting question can be 
raised: what is the fate of the topological non-trivial state when 
the quasiperiodic hopping disorder is introduced in 1D SSH chain, 
besides the random hopping disorder? To examine this question, 
we propose two quasiperiodic disordered SSH models with two 
different disorder configurations and investigate how the topologi-
cal phase transition occurs.

The rest of the paper is organized as follows. In Sec. 2, we 
investigate the topological phase transition in 1D SSH chain by 
adding the AA quasiperiodic disorder. In Sec. 3, we investigate the 
topological phase transition in 1D SSH chain by adding the slowly 
varying quasiperiodic disorder. We also investigate the localized 
property (mobility edges) of this system besides the topological 
phase transition. The conclusion is summarized in Sec. 4.

2. The AA quasiperiodic disorder

The SSH model describes a 1D chain of spinless fermions 
with alternating hopping strengths between the neighboring tight-
binding lattices. For a chain with L lattices and open boundary 
conditions, the Hamiltonian of the model is expressed as

Ĥ = −
L∑
i

(ti,i+1ĉ†
i+1ĉi + H .c.), (1)

where ĉ†
i (ĉi ) is the fermion creation (annihilation) operator of the 

i-th lattice, ti,i+1 = t + a(ui+1 − ui) is the nearest-neighbor hop-
ping amplitude, a is the displacement coupling constant and ui is 
the configuration coordinate for the displacement of the i-th lat-
tice. In the ideal limit, the displacement is of the perfectly periodic 
form, ui+1 − ui = (−1)i λ

a . Thus, the nearest-neighbor hopping am-
plitude becomes ti,i+1 = t + (−1)iλ, where the hopping unit t and 
the dimerization strength λ are both constants. This is the ordinary 
SSH model. When λ > 0 the system is in the topological phase 
with the presence of twofold-degenerate zero-energy edge states 
at two ends, whereas when λ < 0 the system is in the topologi-
cally trivial phase without the presence of zero-energy edge states.

When the displacement becomes disordered, i.e., ui+1 − ui =
(−1)i λ+δi

a , Eq. (1) can be written as

Ĥ = −
L
2∑
i

(t1ĉ†
2i−1ĉ2i + H .c.) −

L
2 −1∑

i

(t2ĉ†
2i ĉ2i+1 + H .c.), (2)

where the intracell hopping t1 = t − λ − δi and the intercell hop-
ping t2 = t + λ + δi with δi = δ cos(2πβi + φ) represent the AA 
quasiperiodic disorder, see Fig. 1 for illustration. The total Hamilto-
nian still maintains the chiral symmetry. In this paper we concen-
trate on the stability of the topological phase, so we only focus on 
the situation with λ > 0 hereafter. A typical choice of the parame-
ters is δ > 0, β = (

√
5 − 1)/2 and φ = 0. For convenience, t = 1 is 

set as the energy unit.
By numerically diagonalizing the Hamiltonian (2), we can get 

the eigenvalues (denoted by E) and the wave-functions (denoted 

Fig. 2. (Color online.) The spectrum (only the middle four eigenvalues are shown) 
of the Hamiltonian (2) with λ = 0.5 as a function of δ under the open boundary 
condition. The total number of sites is set as L = 10000 hereafter. The 5000th and 
5001th eigenvalues stay at zero until δ = 1.5, see the blow up of the inset. The 
spatial distributions of ψ for the 5000th and 5001th eigenvalues with various δ are 
shown in the lower figures. The lower left picture corresponds to ψ of zero-energy 
modes in the topological region, and the lower right picture corresponds to ψ of 
nonzero-energy modes in the topologically trivial region.

by ψ ) of the system. We show the spectrum when λ = 0.5 un-
der the open boundary condition in Fig. 2, where there is a regime 
with nonzero energy gaps in the range δ < 1.5 and there are zero-
energy modes in the midgap. As long as the chiral symmetry is 
preserved, zero-energy modes cannot be removed by the weak dis-
order. To show the difference between wave-functions with the 
zero-energy and nonzero-energy modes clearly, we plot the spatial 
distributions of wave-functions for the midmost excitations (the 
5000th and 5001th eigenvalues) with different δ’s. When δ = 1.4, 
the energy gap is still finite, and the wave-functions with zero-
energy modes are located at the left (right) end of the chain and 
decay very quickly away from the left (right) edge with no over-
lap, as shown in Fig. 2. However, when δ = 1.6, the energy gap 
is closed, the zero-energy modes disappear and the amplitudes 
of the wave-functions of the midmost excitations overlap together 
and are located within a finite range of the whole chain. Therefore, 
these results demonstrate that the system can undergo a transition 
from a topological phase to a topologically trivial phase when the 
strength of the quasiperiodic disorder δ exceeds a certain level.

We now wonder if there exists a fixed value of δ which de-
notes the gap-closing point [29]. Due to the chiral symmetry, the 
eigenvalues appear in pairs. We arrange the eigenvalues in the as-
cending order and use E ′ to denote the smallest eigenvalue which 
is larger than the zero energy. Thus, �g = 2E ′ can explicitly de-
termine the gap-closing point and denote the topological phase 
boundary between different topological phases due to the bulk-
boundary correspondence. In Fig. 3, we plot the variation of energy 
gap �g versus δ for different λ’s. It is clearly shown that there 
are finite gaps as δ is smaller than a critical value, i.e. δ < 1 + λ, 
whereas the energy gaps vanish when δ > 1 + λ. To visualize the 
result better we make a finite size analysis of the scaling behavior 
of �g for λ = 1 as a function of the inverse of system size in the 
inset of Fig. 3. It exhibits an oscillating behavior at δ = 1.8, 1.9, 
which indicates that the energy gap is finite in the regime with 
δ < 1 + λ. Whereas the energy gap approaches zero at δ = 2.0, 
2.1, which indicates that δ = 1 + λ indeed denotes the gap-closing 
point. To strength the validity of our conclusion, we also systemat-
ically calculate the energy gap with other sets of δ and λ, and find 
the similar behaviors.

In general, the topological phase transition is characterized by 
the change of the topological invariant. Beyond the translational 
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