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We design a new structure for a cuprate superconductor indicating the possibility of higher temperature 
superconductivity using our recently proposed composite fermions theory. It is constructed with 
modulation-doped superlattice structures, which are often used in the design of semiconductor 
superlattice devices. The superconductive critical temperature (Tc) was calculated in the superlattice 
structures of the superconductor in which the optimal doped CuO2 layer was sandwiched between two 
less-doped CuO2 layers. We find that if these structures could be realized in a cuprate superconductor 
such as Bi2Sr2Ca2Cu3O10 or HgBa2Ca2Cu3O9, the highest Tc could attain the level of 300 K at atmospheric 
pressure.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

After Bednorz and Müller [1] discovered the first cuprate su-
perconductor in 1986, the maximum Tc of high-temperature su-
perconductors was assumed to be 135 K of Hg-1223 [2]. In 2015, 
however, it was reported that the Tc value of H2S was 203 K 
at 150 GPs [3]. To discover higher Tc superconductors, especially 
material indicating superconductivity at room temperature and at-
mospheric pressure, many trials and errors will be necessary. The 
theoretical approach will also be necessary to succeed. Recently, 
we proposed a theory of high-temperature superconductivity that 
emphasized that the electronic state of superconductors can be 
described by the composed fermions [4–6]. In this theory, d-p an-
tiferromagnetic interaction and doping quantity in CuO2 planes 
are primary factors for determining the Tc of superconductors. 
The highest Tc is determined by optimizing these factors, but its 
value has been limited due to the trade-off relations between fac-
tors. In this letter, modulation-doped superlattice structures, which 
are often used in semiconductor devices [7], are proposed in or-
der to avoid these trade-off relations, and the approach to real-
izing a higher Tc is considered in a cuprate superconductor with 
modulation-doped superlattice structures.
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2. Formulation

2.1. Effective Hamiltonian in a single CuO2 layer

The starting Hamiltonian is an extended d-p model for a single 
layer of square planar in cuprate superconductors

H =
∑
iσ

εdd+
iσ diσ +

∑
jσ

εp p+
jσ p jσ +

∑
iσ

∑
j∈{i}

(
εi jd

+
iσ p jσ + H.c.

)

+
∑

i

Ud+
i↑di↑d+

i↓di↓ +
∑

i jσσ ′
V ijd

+
iσ diσ p+

jσ ′ p jσ ′ , (1)

where the operator d+
iσ creates Cu 3d holes at site i, p+

jσ creates 
O 2p holes at site j, εd = 0, and εi j is the nearest-neighbor hop-
ping integral. U is the Coulomb repulsion at the Cu site, and V ij is 
the interaction between neighboring Cu and O sites. In (1), the vac-
uum is defined as filled Cu d10 and Op6 states. Considering the d-p
covalency effect, the operator combining the O states around the 
Cu ion is defined as p̃+

iσ = 0.5 
∑

j∈{i} εi j |εi j|−1 p+
jσ in which εi j is 

given by εi j = −ε < 0 ( j = 1, 2), ε > 0 ( j = 3, 4) [8]. Since the re-
lation of 

∑
j p+

jσ p jσ = 2 
∑

i p̃+
iσ p̃iσ is satisfied in the Cu–O planes, 

Hamiltonian (1) is changed such that

H = 2
∑
iσ

εp p̃+
iσ p̃iσ +

∑
iσ

(
εd+

iσ p̃iσ + H.c.
) +

∑
i

Ud+
i↑di↑d+

i↓di↓

+ 2
∑
iσσ ′

V id
+
iσ diσ p̃+

iσ ′ p̃iσ ′ . (2)

https://doi.org/10.1016/j.physleta.2018.09.024
0375-9601/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physleta.2018.09.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:tyus51kzhs@ares.eonet.ne.jp
https://doi.org/10.1016/j.physleta.2018.09.024


JID:PLA AID:25310 /SCO Doctopic: Condensed matter [m5G; v1.243; Prn:25/09/2018; 10:25] P.2 (1-5)

2 K. Nishi / Physics Letters A ••• (••••) •••–•••

Since the operator p̃+
iσ is not orthogonal between the neighbor-

ing Cu sites, it does not exactly satisfy anti-commutation relations. 
However, as approximated here, p̃+

iσ can be a well-defined fermion 
operator. To the second order in perturbation theory on the condi-
tion of ε < U , let us determine the effective Hamiltonian (2). First 
in the second term of (2), the terms acting on the interaction U as 
a perturbation can be selected as follows:

H ′ =
∑
iσ

{
ε
[
ndσ ′d+

iσ p̃iσ (1−npσ ′)+(1−ndσ ′)d+
iσ p̃lσ npσ ′

]+H.c.
}
,

(3)

where H ′ indicates the terms in the presence of fermions with the 
opposite spin at either d or p sites, because the ground state is not 
assumed here to include double occupancy states. The Coulomb 
interaction U in the ground state can be effectively eliminated 
from the starting Hamiltonian because double occupancy states at 
d-sites are inhibited by Coulomb repulsion. Considering the second 
term except H ′ in (2), Hamiltonian (2) is modified by

H = 2
∑
iσ

ε p̃+
iσ p̃lσ +

∑
iσ

〈1 − npσ ′ 〉(εd+
iσ p̃iσ + H.c.

)

+ 2
∑
iσσ ′

V id
+
iσ diσ p̃+

iσ ′ p̃iσ ′

+
∑

iσ �=σ ′

[〈
ndσ ′(1 − npσ ′)

〉 + 〈
(1 − nnσ ′)npσ ′

〉]2

× (− J1d+
iσ diσ p̃+

iσ ′ p̃iσ ′ − J2d+
iσ p̃iσ p̃+

iσ ′diσ ′
)
, (4)

where J1 = ε2(U − 2εp − 2V i)
−1, J2 = ε2(2εp − 2V i)

−1, and oc-
cupancy factors such as (1 − npσ ′ ) are averaged using 〈1 − npσ ′ 〉. 
Although the former part of the fourth term in (4) corresponds to 
the kinetic energy due to the hopping between sites, it is neglected 
here due to the second-order kinetic energy. The latter part corre-
sponds to the effective anti-ferromagnetic interaction between d-p
fermions. Thus, the effective Hamiltonian is finally obtained as

Hef f = 2
∑
iσ

ε p̃+
lσ p̃iσ +

∑
iσ

〈1 − npσ ′ 〉(εd+
iσ p̃lσ + H.c.

)

+ 2
∑
lσσ ′

V d+
iσ diσ p̃+

iσ ′ p̃iσ ′ , (5)

where V = V i + 0.5Vσσ ′ (V i : Coulomb interaction between the 
nearest neighboring sites in (1), Vσσ ′ : anti-ferromagnetic interac-
tion Vσσ ′ = −[〈ndσ ′ (1 − npσ ′ )〉 + 〈(1 − nnσ ′ )npσ ′ 〉]2 J1 < 0σ �= σ ′).

Now the ground state of the effective Hamiltonian (5) will be 
generally considered in two states depending on the doping condi-
tions. One of these is the state in the neighborhood of the insulator 
(so-called Mott insulator) and the other is the superconducting 
state based on the band picture.

2.2. Superconductive critical temperature Tc

Let us consider the case of the superconducting state based on 
the band picture. Since the representation in momentum space is 
appropriate in this region, the effective Hamiltonian of (5) is trans-
formed into

H =
∑
kσ

εp p+
kσ pkσ +

∑
kσ

〈1 − npσ ′ 〉εs(k)
(−id+

kσ pkσ + ip+
kσ dkσ

)

+
∑

kk′k′′σσ ′
V θkk′d+

kσ dk′σ p+
k′′σ ′ pk−k′+k′′,σ ′ , (6)

where s(k) = sin kx + sin ky, θkk′ = cos(kx − k′
x) + cos(ky − k′

y). The 
Cu–O distance is used as the length unit. The operators p+

kσ , d+
kσ , 

which are the Fourier transformation of p+
iσ , d+

iσ , construct new 
fermion operators defined by unitary transformation

b+
kσ = αkd+

kσ + iβk p+
kσ , c+

kσ = βkd+
kσ − iαk p+

kσ ,

α2
k + β2

k = 1, (7)

where b+
kσ , c+

kσ satisfy anti-commutation relations. Notice that the 
operators p+

klσ satisfy the anti-commutation relations exactly, but 
are the approximated operators of p̃+

inlσ in momentum space.
In this doping region the relation of 〈ndσ ′ 〉 ≈ 1, 〈1 −npσ ′ 〉 ≈ 1 −

0.5δ will be generally reasonable. On the condition of αkβkεp =
(1 − 0.5δ)εs(k)(β2

k − α2
k), the Hamiltonian (6) is represented by

H =
∑
kσ

εp
(
β2

k − α2
k

)−1(
β2

kb+
kσ bkσ − α2

kc+
kσ ckσ

)

+ N−1
∑

kk′k′′σσ ′
V θkk′

(
αkαk′βk′′βk−k′+k′′b+

kσ bk′σ b+
k′′σ ′

× bk−k′+k′′,σ ′ + αkαk′αk′′αk−k′+k′′b+
kσ bk′σ c+

k′′σ ′ck−k′+k′′,σ ′

+ βk′′βk−k′+k′′βkβk′c+
kσ ck′σ b+

k′′σ ′bk−k′+k′′,σ ′

+ βkβk′αk′′αk−k′+k′′c+
kσ ck′σ c+

k′′σ ′ck−k′+k′′,σ ′ + · · ·). (8)

Note that V = V c + Vσσ ′ ≈ Vσσ ′ < 0, because in this doping region 
the Coulomb interaction V c can be neglected due to the screening 
effect of carriers. Since the energy level of the b+

kσ band is higher 
than the c+

kσ band, let us consider only the b+
kσ band containing 

the Fermi surface. In this situation, the interactive contribution of 
c+

kσ fermions will be almost negligible. It is only necessary to con-
sider the kinetic energy of the b+

kσ fermions, and the attractive 
interaction between them. This suggests that Eq. (8) is reduced to 
a BCS-like Hamiltonian. In BCS theory, the neighborhood of the 
Fermi surface in which there exists attractive interaction with the 
phonon is only considered to calculate the superconductive critical 
temperature. A similar treatment will be applied here, although 
the attractive anti-ferromagnetic interaction between b+

kσ fermions 
is not necessarily limited to the neighborhood of the Fermi sur-
face. In this treatment, b+

k↑, b+
−k↓ pairs will mainly contribute to 

the attractive interaction; then, it is possible to justify using a 
BCS-like approach to calculate the critical temperature. However, 
the present theory is different from the BCS theory in that Cooper 
pairs can be uniquely created by the composite fermions con-
structed with the specific ratio of d+

kσ and p+
kσ holes. Thus the 

BCS-like wave function will be adopted as the ground state of (8).

|ΨS〉 =
∏
kσ

(
uk + vkb+

k↑b+
−k↓

)|0〉, u2
k + v2

k = 1. (9)

The gap equation is then obtained as

	k = −0.5
∑

k′
	k′ V kk′

(
	2

k + ε2
k

)−1/2
,

V kk′ = N−1 V αkαk′βkβk′θkk′ , (10)

where εk = 0.5(εp +
√

4(1 − 0.5δ)2ε2s2(k) + ε2
p) − εF ). Replacing 

the sum in the gap equation with an integral, the solution that 
is even in k is given by 	k = 	0αkβk (cos kx ± cos ky). The so-
lution decreasing Coulomb interaction is 	k ∝ (cos kx − cos ky), 
which agrees with the experimental fact of the anisotropic gap of 
high-temperature cuprate superconductors [9]. Therefore, 	0 is de-
termined by the relation

1 = −0.5π−2 V

∫
α2

kβ2
k(cos kx − cos ky)

× cos kx
[
	2

0α
2
kβ2

k(cos kx − cos ky)
2 + ε2

k

]−1/2
dk. (11)
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