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h i g h l i g h t s

• Existence of a standing pulse solution with O(1) coefficients.
• Construction of center stable manifolds describing the motion of pulses on heterogeneous media.
• Contraction to a function giving total effects of slowly changing heterogeneity.
• Characterization of the interaction between two pulses.
• Construction of two peak stable stationary solution consisting of two pulse.
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a b s t r a c t

Particle like structures have been observed inmany fields of science. In a homogeneousmedium, a stable,
standing pulse is a localized wave that may arise when nonlinear and dissipative effects are in balance.
In this paper, we investigate certain phenomena associated with the dynamics of pulse solutions for a
FitzHugh–Nagumo reaction–diffusion model. When two pulses are located far from one another initially,
their weak interaction drives the subsequent slow dynamics. Our comprehension of the standing pulse
profiles allows us to quantitatively characterize their interplay; when the diffusivity of the activator
is small compared to that of the inhibitor, the two pulses repel. In addition, using a center-manifold
reduction to study the presence of heterogeneities in the environment, we demonstrate that the pulses
will move so as to maximize the strength of activation or minimize that of inhibition. The pulse motion
will also be influenced by the reaction mechanism.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Reaction–diffusion equations serve as models for studying var-
ious nonlinear phenomena [1–13] in science. One of the interest-
ing features frequently found in reaction–diffusion models is the
generation of self-organized patterns. Following on from the pi-
oneering work of Turing [14], pattern formation became an active
research field, inwhich the traditional disciplines of physics, chem-
istry, biology, and mathematics interact, and significant progress
has been made in recent years. Many patterns emerging from
homogeneousmedia are destabilized by a spatialmodulation. They
consist of basic structure elements like stripes or spots which are
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more or less uniformly distributed. From a mathematical point of
view,when a homogeneous equilibrium loses its stability in tuning
a certain physical parameter, the eigenfunction corresponding to
the eigenvalue that changes the stability is the dominant mode
governing the self-generalized pattern.

Besides these regular patterns found in a neighborhood induced
by the Turing instability, localized structures [2,10,15] have also
been observed in experiments and numerical simulations. Fronts
and pulses are typical examples of localized patterns. A front is a
generic structure connecting two different states of a system that
possesses a bi-stable nonlinear structure [16–21], whereas a pulse
[22–36] is near to a trivial background state superimposed with a
number of localized spatial regions where changes are substantial.
Such phenomena have been observed, for instance, in the study of
nerve pulses in biological systems [5,7,11], concentration drops in

https://doi.org/10.1016/j.physd.2018.07.001
0167-2789/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physd.2018.07.001
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:Eichiro@math.sci.hokudai.ac.jp
https://doi.org/10.1016/j.physd.2018.07.001


Please cite this article in press as: C. Chen, et al., Heterogeneity-induced effects for pulse dynamics in FitzHugh–Nagumo-type systems, Physica D (2018),
https://doi.org/10.1016/j.physd.2018.07.001.

2 C. Chen et al. / Physica D ( ) –

chemical systems [10], and current filaments [2] in physical sys-
tems.We are interested in pulse dynamics related to the FitzHugh–
Nagumo equations:

ut = δ2uxx + f (u) − v, (1.1)

τvt = vxx + u − γ v, (1.2)

where δ, τ , γ ∈ (0, ∞), f (u) = u(u − β)(1 − u) and 0 < β <

1/2. As an activator–inhibitor-type reaction–diffusionmodel, (1.1)
and (1.2) received a great deal of attention in studying diffusion-
induced instability. Throughout the paper, it is assumed that γ <

3β2

2(1−2β) ; that is, (1.1) and (1.2) are coupled equations describing
a monostable excitable system with (u, v) = (0, 0) being the
only constant steady state. A standing pulse of (1.1) and (1.2) is
a solution of

δ2uxx + f (u) − v = 0, (1.3)

vxx + u − γ v = 0 (1.4)

on the real line with asymptotical behavior

lim
|x|→∞

(u(x), v(x)) = (0, 0) . (1.5)

As both u and v are even functions of x, the existence of standing
pulse solutions of (1.1) and (1.2) has been established [22] by
variational method. Indeed, for a given u ∈ H1(0, ∞), there is a
solution of (1.4) denoted by

v(x) = L̂u (x) :=

∫
∞

0
Γ (x, s) u(s) ds, (1.6)

where Γ (x, s) is the Green function for −
d2

dx2
+γ subject to the ho-

mogeneous Neumann boundary condition at x = 0 and asymptotic
decay for large x. Since L̂ : L2(0, ∞) → L2(0, ∞) is self-adjoint, if
u0 is a critical point of Ĵ defined by

Ĵ(w) :=

∫
∞

0
{
δ2

2
w2

x +
1
2
w L̂w −

∫ w(x)

0
f (ξ ) dξ} dx , (1.7)

then (u0, L̂u0) is a standing pulse solution of (1.1) and (1.2). For
small δ, as the globalminimizer of Ĵ does not exist, a standing pulse
solution was obtained [22] by finding a local minimizer of Ĵ .

Localized standing pulses result from the balance between dis-
sipation and nonlinearity. Such steady states are usually located
far from homogeneous equilibrium. The reaction terms of (1.1)
and (1.2) are coupled in a skew-gradient structure [37]. Based on
this Hamiltonian structure, an index theory [38] was employed to
justify the stability [39] of standing pulses of (1.1) and (1.2). For a
non-degenerateminimizer u0 of Ĵ , the stability analysis [39] shows
that (u0, L̂u0) is a stable standing pulse of (1.1) and (1.2) if τ < γ 2.
We refer to [37,39] for some criteria to justify unstable standing
pulse and [39–43] for the use of theMaslov index as a tool to study
stability of solitarywaves. By numerical experiment, the profile of a
stable standing pulse of (1.1) and (1.2) is demonstrated in Fig. 1.1.

Heterogeneity is the most important and ubiquitous type of
external perturbation observed in natural environments, and in-
deed natural media generally contain heterogeneity. Nevertheless,
in simplified situations, the medium in many mathematical mod-
els, on which the process under consideration acts, is assumed
to be homogeneous. When a reaction–diffusion system is per-
turbed by some small heterogeneity, some new phenomena such
as the existence of multi-peak solutions [44,45] and the block of
traveling pulse solutions [46] have been observed. With a good
understanding of standing pulses for the system in a homogeneous
medium as stated in the above, we intend to investigate various
scenarios of pulse motion in the presence of heterogeneities in the
environment.

Fig. 1.1. Standing pulse solution u0 (in blue) changes sign and v0 (in red) stays
positive. Here in (1.3)–(1.4) γ = 0.1, β = 0.3 and δ = 10−2 . (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

In this paper we employ invariant manifold theory to study the
following system:

∂U
∂t

= F (U) + ηG(x), (1.8)

where U := (u, v),

F (U) :=

(
δ2uxx + f (u) − v
1
τ
(vxx + u − γ v)

)
(1.9)

and η is a small positive number. Instead of dealing with heteroge-
neous media of jump type [47–49], it is assumed that

(G1) G(x) is a bounded continuous function.
The theory of center-stable manifold has been developed

for studying various questions of differential equations (see e.g.
[29,50–54] and the references therein). In principle it is effective to
deal with a system which has neutral modes, for instance, transla-
tion free and rotationally free modes. When a system has a stable
family of solutions which are parametrized by free modes, then
near such a family of solutions there exist a center-stable manifold
in a small perturbed system. This situation frequently appears at a
bifurcation point, where the linearization at the trivial solution has
critical eigenvalues on the imaginary axis. The parametrized family
of solutions is a eigenspace associatedwith the critical eigenvalues.
With certain normal hyperbolicity conditions, the construction of
center-stable manifold has been further extended [50,54] to deal
with more general family of solutions.

In the study of heterogeneity-induced effects to the motion of
pulse dynamics, variationalmethods are not themain tool for solv-
ing the problem; nevertheless it does provide useful information
such as the stability and the decay profile of a standing pulse, as to
be seen in the next section. As illustrated in Fig. 1.1, wemay look at
the u component and simply take the peak of a pulse to denote its
location, which seems to be convenient to trace the way that each
pulse moves. To simplify the analysis in presentation, we assume
that

(G2) G ∈ (L2(R))2.
The questions to be studied are related to (i) the single pulse

motion induced by the heterogeneity (see Theorem 3.1 and (3.9)),
(ii) two pulse motion in absence of the heterogeneity (see The-
orem 4.1), and (iii) two pulse motion with a heterogeneity (see
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