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a b s t r a c t

We show that every k-tree of toughness greater than k
3 is Hamilton-connected for k ≥ 3.

(In particular, chordal planar graphs of toughness greater than 1 are Hamilton-connected.)
This improves the result of Broersma et al. (2007) and generalizes the result of Böhme et al.
(1999).

On the other hand, we present graphs whose longest paths are short. Namely, we
construct 1-tough chordal planar graphs and 1-tough planar 3-trees, and we show that the
shortness exponent of the class is 0, at most log30 22, respectively. Both improve the bound
of Böhme et al. Furthermore, the construction provides k-trees (for k ≥ 4) of toughness
greater than 1.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We continue the study of Hamiltonicity and toughness of k-trees following Broersma et al. [6] and of chordal planar
graphs following Böhme et al. [3].

We recall that for a positive integer k, a k-tree is either the graph Kk (that is, the complete graph on k vertices) or a graph
containing a vertex whose neighbourhood induces Kk and whose removal gives a k-tree. Clearly, k-trees are chordal graphs.
We recall that the toughness of a graph G is the minimum, taken over all separating sets X of vertices of G, of the ratio of |X |

to the number of components of G − X . The toughness of a complete graph is defined as being infinite. We say that a graph
is t-tough if its toughness is at least t .

In [6], Broersma et al. showed that certain level of toughness implies that a k-tree has a Hamilton cycle (see also [20,26]).

Theorem 1. Let k ≥ 2. Every k+1
3 -tough k-tree (except for K2) is Hamiltonian.

In the same paper, they constructed 1-tough k-trees which have no Hamilton cycle for every k ≥ 3.
An older result considering toughness and Hamiltonicity in another subclass of chordal graphs is due to Böhme et al. [3]

who showed the following:

Theorem 2. Every chordal planar graph (on at least 3 vertices) of toughness greater than 1 is Hamiltonian.
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In [11], Gerlach generalized Theorem 2 for planar graphs whose separating cycles of length at least four have chords. In
this paper, we present a different generalization of Theorem 2 which also improves the result of Theorem 1.

The mentioned results were motivated by the following conjecture stated by Chvátal [9].

Conjecture 3. There exists t such that every t-tough graph (on at least 3 vertices) is Hamiltonian.

Conjecture 3 remains open. Partial results are known for some restricted classes of graphs; for instance, for different
subclasses of chordal graphs (see [3,5,6,18,19]), and for the class of chordal graphs itself (see [7] or [17]). The best known
lower bounds regarding Conjecture 3 for chordal graphs and for general graphs were shown in [2]. The study of toughness
of graphs (and Conjecture 3 in particular) is well-documented by a series of survey papers, we refer the reader to [1] (for
more recent results, see [4]).

In addition to the result of Theorem 2, Böhme et al. [3] presented 1-tough chordal planar graphs whose longest cycles are
relatively short (compared to the number of vertices of the graph); and using the notion of shortness exponent by Grünbaum
and Walther [13], they argued the following:

Theorem 4. The shortness exponent of the class of 1-tough chordal planar graphs is at most log9 8.

We recall that the shortness exponent of a class of graphs Γ is the lim inf, taken over all infinite sequences Gn of
non-isomorphic graphs of Γ (for n going to infinity), of the logarithm of the length of a longest cycle in Gn to base equal
to the number of vertices of Gn.

For more results considering the shortness exponent, see the survey [24]. To conclude this section, we mention that by
the combination of results of Moser and Moon [22] and Chen and Yu [8], the shortness exponent of the class of 3-connected
planar graphs equals log3 2.

2. New results

We recall that a graph is Hamilton-connected if for every pair of its vertices, there is a Hamilton path between them.
Clearly, every Hamilton-connected graph (on at least 3 vertices) is Hamiltonian. Using a simple argument, we improve the
result of Theorem 1 as follows. (This also improves the result of [20] since Hamilton-connected chordal graphs are, in fact,
panconnected.)

Theorem 5. Let k ≥ 3. Every k-tree of toughness greater than k
3 is Hamilton-connected. Furthermore, every 1-tough 2-tree

(except for K2) is Hamiltonian.

The proof of Theorem 5 is given in Section 3. We also show that under this toughness restriction a graph is chordal planar
if and only if it is a 3-tree or K1 or K2 (see Lemma 15). In particular, Theorem5 implies that chordal planar graphs of toughness
greater than 1 are Hamilton-connected (it generalizes the result of Theorem 2).

In the other direction, we present 1-tough chordal planar graphs and 1-tough planar 3-trees whose longest paths and
cycles are relatively short.

In particular, for every ε > 0, there exists a 1-tough chordal planar graph G whose longest path has less than |V (G)|ε

vertices. In Section 4, we note that such graphs can be obtained by considering the square of particular trees. Consequently,
we adjust the result of Theorem 4 as follows:

Theorem 6. The shortness exponent of the class of 1-tough chordal planar graphs is 0.

We remark that the graphs constructed in [3] are 3-connected, so the bound log9 8 of Theorem 4 also applies to the
shortness exponent of the class of 1-tough planar 3-trees (see Lemma 16). In Section 5, we use the standard construction
for bounding the shortness exponent (for more details regarding this construction, see for instance [24] or [16]), and we
improve this bound by the following:

Theorem 7. The shortness exponent of the class of 1-tough planar 3-trees is at most log30 22.

In Section 6, we extend the used construction, and we remark that there are k-trees of toughness greater than 1 whose
longest paths are relatively short for every k ≥ 4. (Meanwhile, 3-trees of toughness greater than 1 are Hamilton-connected
by Theorem 5.) This remark slightly improves the lower bound on toughness of non-Hamiltonian k-trees presented in [6],
and contradicts the suggestion of [26].

3. Tough enough k-trees are Hamilton-connected

In this section, we prove Theorem 5. Simply spoken, the proof is inductive; we choose a vertex on a path and we extend
the path using particular neighbours of this vertex.

For a vertex v, we let N(v) denote its neighbourhood, that is, the set of all vertices adjacent to v. We say a set S ⊆ N(v) is
a squeeze by v if the following properties are satisfied for S and R = N(v) \ S.
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