Note

# Infinite family of transmission irregular trees of even order 

Andrey A. Dobrynin*<br>Novosibirsk State University, Novosibirsk, 630090, Russia<br>Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia

## ARTICLE INFO

## Article history:

Received 21 July 2018
Received in revised form 31 August 2018
Accepted 9 September 2018
Available online xxxx

## Keywords:

Graph invariant
Vertex transmission
Transmission irregular graph
Wiener complexity


#### Abstract

Distance between two vertices is the number of edges in a shortest path connecting them in a connected graph $G$. The transmission of a vertex $v$ is the sum of distances from $v$ to all the other vertices of $G$. If transmissions of all vertices are mutually distinct, then $G$ is a transmission irregular graph. It is known that almost no graphs are transmission irregular. Infinite families of transmission irregular trees of odd order were presented in Alizadeh and Klavžar (2018). The following problem was posed in Alizadeh and Klavžar (2018): do there exist infinite families of transmission irregular trees of even order? In this article, such a family is constructed.


© 2018 Elsevier B.V. All rights reserved.

## 1. Introduction

All graphs considered in this paper are undirected, connected, without loops and multiple edges. The vertex set of a graph $G$ is denoted by $V(G)$. By distance $d(u, v)$ between vertices $u, v \in V(G)$ we mean the standard distance of a simple graph $G$, that is, the number of edges on a shortest path connecting these vertices in $G$. The transmission, $\operatorname{tr}(v)$, of vertex $v \in V(G)$ is defined as the sum of distances from $v$ to all the other vertices of $G$. A half of the sum of vertex transmissions gives the Wiener index that has found important applications in chemistry (see selected books [6,11-13,16] and reviews [7$10,14,15]$ ). Transmissions of vertices are used for design of distance-based information topological indices [5,6]. The number of different vertex transmissions is known as Wiener complexity of a graph [1-3]. A graph is called transmission irregular if it has the largest possible Wiener complexity over all graphs of a given order, that is, vertices of the graph have pairwise different transmissions.

It was shown that almost all graphs are not transmission irregular [4]. This follows from the fact that almost every graph has diameter 2. There are infinite families of transmission irregular trees of odd order [4]. The following problem was formulated in [4]: do there exist infinite families of transmission irregular trees of even order? In this paper, we construct such a family.

## 2. Main result

Consider a tree $T_{k}$ of order $2 k+6, k \geq 3$, depicted in Fig. 1. It contains two growing paths of order $k$ and $k+1$.
Theorem 1. If $k=m(m+1) / 2$ where $m=3$ or $m \geq 8$, then $T_{k}$ is a transmission irregular tree of even order.
Tree $T_{k}$ has order $m(m+1)+6, m=3$ or $m \geq 8$. Initial members of the constructed infinite family are $T_{6}, T_{36}, T_{45}$ of order $18,78,96$, respectively. As an illustration, transmissions of trees $T_{6}$ and $T_{36}$ are presented. For $T_{6}$, we have $\operatorname{tr}\left(v_{1}\right), \ldots, \operatorname{tr}\left(v_{6}\right)=$

[^0]

Fig. 1. Tree $T_{k}, k \geq 3$.

Table 1
Transmissions of $T_{36}$.

| $t r$ | ver | $\operatorname{tr}$ | ver | $\operatorname{tr}$ | ver | $t r$ | ver | $\operatorname{tr}$ | ver | $\operatorname{tr}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1376 | $w_{1}$ | 1444 | $u_{31}$ | 1550 | $v_{26}$ | 1752 | $u_{20}$ | 2070 | $v_{13}$ | 2428 |
| 1378 | $u_{37}$ | 1450 | $w_{2}$ | 1554 | $u_{26}$ | 1788 | $v_{19}$ | 2074 | $u_{13}$ | 2490 |
| 1380 | $v_{36}$ | 1454 | $w_{3}$ | 1578 | $v_{25}$ | 1792 | $u_{19}$ | 2124 | $v_{12}$ | 2494 |
| 1384 | $u_{36}$ | 1456 | $w_{4}$ | 1582 | $u_{25}$ | 1830 | $v_{18}$ | 2128 | $u_{12}$ | 2558 |
| 1388 | $v_{35}$ | 1458 | $v_{30}$ | 1608 | $v_{24}$ | 1834 | $u_{18}$ | 2180 | $v_{11}$ | 2562 |
| 1392 | $u_{35}$ | 1462 | $u_{30}$ | 1612 | $u_{24}$ | 1874 | $v_{17}$ | 2184 | $u_{11}$ | 2628 |
| 1398 | $v_{34}$ | 1478 | $v_{29}$ | 1640 | $v_{23}$ | 1878 | $u_{17}$ | 2238 | $v_{10}$ | 2632 |
| 1402 | $u_{34}$ | 1482 | $u_{29}$ | 1644 | $u_{23}$ | 1920 | $v_{16}$ | 2242 | $u_{10}$ | 2700 |
| 1410 | $v_{33}$ | 1500 | $v_{28}$ | 1674 | $v_{22}$ | 1924 | $u_{16}$ | 2298 | $v_{9}$ | 2704 |
| 1414 | $u_{33}$ | 1504 | $u_{28}$ | 1678 | $u_{22}$ | 1968 | $v_{15}$ | 2302 | $u_{9}$ | 2774 |
| 1424 | $v_{32}$ | 1524 | $v_{27}$ | 1710 | $v_{21}$ | 1972 | $u_{15}$ | 2360 | $v_{8}$ | 2778 |
| 1428 | $u_{32}$ | 1526 | $w_{5}$ | 1714 | $u_{21}$ | 2018 | $v_{14}$ | 2364 | $u_{8}$ | 2850 |
| 1440 | $v_{31}$ | 1528 | $u_{27}$ | 1748 | $v_{20}$ | 2022 | $u_{14}$ | 2424 | $v_{7}$ | 2854 |

$120,104,90,78,68,60 ; \operatorname{tr}\left(u_{1}\right), \ldots, \operatorname{tr}\left(u_{7}\right)=124,108,94,82,72,64,58 ;$ and $\operatorname{tr}\left(w_{1}\right), \ldots, \operatorname{tr}\left(w_{5}\right)=56,70,74,76,86$. Transmissions and the corresponding vertices of $T_{36}$ are collected in Table 1.

## 3. Proof of Theorem 1

Transmissions of all vertices of $T_{k}$ will be quadratic polynomials in $k$. We find explicit form of these polynomials and formulate conditions on $k$ for which two vertices of $T_{k}$ may have equal transmissions. All other values of $k$ will define an infinite family of transmission irregular trees $T_{k}$ when $k$ tends to infinity. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}, U=\left\{u_{1}, u_{2}, \ldots, u_{k+1}\right\}$, and $W=\left\{w_{1}, w_{2}, \ldots, w_{5}\right\}$. Next, we calculate transmissions of vertices of $V, U, W$ and show that no pairs of vertices from these sets have equal transmissions.

1. Calculation of transmissions.

Denote by $t_{i, n}$ transmission of vertex $x_{i}$ in the simple path of order $n$ with successively numbered vertices $x_{1}, x_{2}, \ldots, x_{n}$. Then $t_{i, n}=i^{2}+(n+1)(n-2 i) / 2$. For vertices $v_{i} \in V$ and $u_{i} \in U$, we have

$$
\begin{aligned}
& \operatorname{tr}\left(v_{i}\right)=t_{i, 2 k+2}+\sum_{j=2}^{5} d\left(v_{i}, w_{j}\right)=i^{2}-(2 k+7) i+2 k^{2}+9 k+12 \\
& \operatorname{tr}\left(u_{i}\right)=t_{i, 2 k+2}+\sum_{j=2}^{5} d\left(u_{i}, w_{j}\right)=i^{2}-(2 k+7) i+2 k^{2}+9 k+16
\end{aligned}
$$

Transmissions of vertices $w_{i} \in W$ are equal to $\operatorname{tr}\left(w_{1}\right)=k^{2}+2 k+8, \operatorname{tr}\left(w_{2}\right)=k^{2}+4 k+10, \operatorname{tr}\left(w_{3}\right)=k^{2}+4 k+14$, $\operatorname{tr}\left(w_{4}\right)=k^{2}+4 k+16$, and $\operatorname{tr}\left(w_{5}\right)=k^{2}+6 k+14$.
2. Comparison of transmissions.

Consider vertices of $V$ and $U$. If $i \neq j$, we have $i+j-2 k-7 \leq-6$, and so

$$
\operatorname{tr}\left(v_{i}\right)-\operatorname{tr}\left(v_{j}\right)=\operatorname{tr}\left(u_{i}\right)-\operatorname{tr}\left(u_{j}\right)=(i-j)(i+j-2 k-7) \neq 0
$$

and if $i=j$, then

$$
\operatorname{tr}\left(v_{i}\right)-\operatorname{tr}\left(u_{j}\right)=-4 \neq 0
$$

For vertices of $W$, it is obvious that if $k \geq 3$, then $\operatorname{tr}\left(w_{i}\right) \neq \operatorname{tr}\left(w_{j}\right)$ for all $i \neq j$. In the next lemma, comparing $\operatorname{tr}\left(w_{i}\right)$ with $\operatorname{tr}\left(v_{i}\right)$ and $\operatorname{tr}\left(u_{i}\right)$, we obtain conditions for $T_{k}$ to be a non-transmission irregular tree.

Lemma 1. If there are vertices of $T_{k}$ with equal transmissions, then

$$
k=m(m+1) / 2-a \text { or } k=m(m+1) / 4-b
$$

for some integer $m \geq 3$, where $a \in\{3,5,6,7,8\}$ and $b \in\{5 / 2,7 / 2\}$.

# https://daneshyari.com/en/article/11001889 

Download Persian Version:
https://daneshyari.com/article/11001889

## Daneshyari.com


[^0]:    * Correspondence to: Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.

    E-mail address: dobr@math.nsc.ru.

