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1. Introduction

The complete intersection theorem of Ahlswede and Khachatrian [1,3] is a generalization of the classical Erd6s-Ko-Rado
theorem [ 10] to the case of t-intersecting families. The theorem states the maximum cardinality of a t-intersecting k-uniform
family on n points, for all values of n, k, t. Moreover, it describes all extremal families (in all but a few exceptional cases).
The extremal families are of the form 7, = {S : |[S N [t 4+ 2r]| > t + r}, where r depends on k’;“ ; the set [t + 2r] can be
replaced by any set of size t 4 2r.

The complete intersection theorem concerns the setting of k-uniform families. Dinur and Safra [7] considered the
weighted setting, in which the aim is to find the maximum j, measure of a family on n points without uniformity restrictions,
where 1,(A) = p'l(1 — p)"~1I. They showed that the original complete intersection theorem implies that when p < 1/2,
the maximum p, measure of a t-intersecting family on an unbounded number of points is wgu(t, r) = max, pp(F r).
Ahlswede and Khachatrian [2] had considered the case p = 1/m earlier, and their argument (which differs from that of
Dinur and Safra) extends to all p < 1/2 as well. Recently [ 11] we have extended these results to all values of p, determining
in addition all extremal families; they are all of the form ; ;, and the maximum p, measure of a t-intersecting family on n
points is w(n, t,r) := max, _n_t wp(Fe.r)-

It is natural to ask what happens when we allow our families to depend on infinitely many points rather than on an
unbounded number of points. In Section 4 we show that when p < 1/2, the maximum (., measure of a t-intersecting family
on infinitely many points is still max;, py(% ), and furthermore all extremal families are of the form 7; ,. We also determine
the answer whenp > 1/2.

Theorem 1.1. Lett > 1, letp € (0, 1), and let F be a measurable t-intersecting family on infinitely many points.
(a) Ifp < 1/2 then pup(F) < weyp(t, p) . Furthermore, if uy(F) = wsyp(t, p) then (up to a null set) F corresponds to an
extremal family F; ;.
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(b) Ifp = 1/2 then u,(F) < 1/2. Furthermore, if up,(F) = 1/2 then t = 1; in this case F need not correspond to an extremal
family 7 ;.
(c) If p > 1/2 then uy(F) < 1, and there is an example of an Ro-intersecting family satisfying up(F) = 1 forallp > 1/2.

Ahlswede and Khachatrian [2] considered the analog of their complete intersection theorem to the Hamming scheme,
in which the objects of study are subsets of Z;, under the uniform measure. Such a subset is t-agreeing if any two vectors
agree on at least t coordinates. They showed that the original complete intersection theorem implies that the maximum
measure of a t-agreeing subset of Z}, for unbounded n is max; w1;m(F; ). In Section 5 we extend their work to families in
which any two vectors have t coordinates which differ by at most s — 1, showing that the maximum measure in this case is
max; ps/m(Fe,r). We also determine all extremal families.

Theorem 1.2. Letn,m,t > 1ands < m/2, and let F be a t-agreeing subset of Z},. The normalized measure of F is at most
w(n, t, s/m). Furthermore, ifs < m/2 (orm = 2,s = 1and t > 1) and the normalized measure of F is exactly w(n, t, s/m),
then F corresponds to an extremal family F; .

The proofs of both results rely on new versions of Katona’s circle argument, described in Section 3.

2. Preliminaries

We use [n] for {1, ..., n}, (}') for all subsets of [n] of size k, and ("}) for all subsets of [n] of size at least k. We denote by

2% the set of all subsets of A. The binomial distribution with n trials and success probability p is denoted Bin(n, p).
We will need the following basic definitions.

Definition 2.1. A family on n points is a collection of subsets of [n]. A family F is t-intersecting if any two sets in F have at
least t points in common. Two families F, G are cross-t-intersecting if any set in F has at least t points in common with every
seting.

A family F on n points is monotone if whenever A € 7 and B 2 A then B € F. Given a family F, its up-set (F) is the
smallest monotone family containing F, whichis (F) = {B2> A: A € F}.

When t = 1, we will drop the parameter t: intersecting family, cross-intersecting families.

Definition 2.2. For any p € (0, 1) and any n, the product measure (., is a measure on the set of subsets of [n] given by

1p(A) = pI(1 — py .

Forn > t > 1and p € (0, 1), the parameter w(n, t, p) is the maximum of u,(F) over all t-intersecting families on n
points.
Fort > 1and p € (0, 1), the parameter wg(t, p) is given by

wsup(t7p) = sup w(n, t, p).
n

It is not hard to see that we can also define wg,p(t, p) as a limit instead of a supremum, since w(n, t, p) is non-decreasing
in n. Indeed, every t-intersecting family on n points can be extended to a t-intersecting family on n + 1 points having the
same [, measure.

The optimal families in the weighted complete intersection theorem, named after Frankl [12], are described in the
following definition.

Definition 2.3. Fort > 1andr > 0, the (t, r)-Frankl family on n points is the t-intersecting family
Fer={AC[n]:|AN[t+2r]| >t +r}.

A family F on n points is equivalent to a (t, r)-Frankl family if there exists a set S C [n] of size t + 2r such that
F={AC[n]:|JANS| >t +r}.

The following theorem, proved in [11], is the u, version of Ahlswede and Khachatrian’s complete intersection theorem.

Theorem 2.1. Letn >t > 1andp € (0, 1). If F is t-intersecting then

up(F) < max up(Fr).
rit+2r<n

Moreover, unless t = 1and p > 1/2, equality holds only if F is equivalent to a Frankl family F; ;.

Whent = 1andp > 1/2, the same holds if n+t is even, and otherwise 7 = GU (_ ,,TLJ where G C (nff]_]) contains exactly
= 2 2
(””;]1) sets.
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