Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

More complete intersection theorems

Yuval Filmus

Department of Computer Science, Technion — Israel Institute of Technology, Israel

a r t i c l e i n f o

Article history: Received 16 January 2018 Received in revised form 10 September 2018 Accepted 10 September 2018 Available online xxxx

Keywords: Extremal combinatorics Erdos–Ko–Rado theory Intersecting families

a b s t r a c t

The seminal complete intersection theorem of Ahlswede and Khachatrian gives the maximum cardinality of a *k*-uniform *t*-intersecting family on *n* points, and describes all optimal families. In recent work, we extended this theorem to the weighted setting, giving the maximum μ_p measure of a *t*-intersecting family on *n* points. In this work, we prove two new complete intersection theorems. The first gives the supremum μ_p measure of a *t*-intersecting family on infinitely many points, and the second gives the maximum cardinality of a subset of \mathbb{Z}_m^n in which any two elements *x*, *y* have *t* positions i_1, \ldots, i_t such that $x_{i_j} - y_{i_j} \in \{-(s-1), \ldots, s-1\}$. In both cases, we determine the extremal families, whenever possible.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The complete intersection theorem of Ahlswede and Khachatrian [\[1,](#page--1-0)[3\]](#page--1-1) is a generalization of the classical Erdős–Ko–Rado theorem [[10\]](#page--1-2) to the case of *t*-intersecting families. The theorem states the maximum cardinality of a *t*-intersecting *k*-uniform family on *n* points, for all values of *n*, *k*, *t*. Moreover, it describes all extremal families (in all but a few exceptional cases). The extremal families are of the form $\mathcal{F}_{t,r} = \{S : |S \cap [t + 2r]| \ge t + r\}$, where r depends on $\frac{k-t+1}{n}$; the set $[t + 2r]$ can be replaced by any set of size $t + 2r$.

The complete intersection theorem concerns the setting of *k*-uniform families. Dinur and Safra [[7\]](#page--1-3) considered the weighted setting, in which the aim is to find the maximum μ_p measure of a family on *n* points without uniformity restrictions, where $\mu_p(A)=p^{|A|}(1-p)^{n-|A|}$. They showed that the original complete intersection theorem implies that when $p< 1/2$, the maximum μ_p measure of a *t*-intersecting family on an unbounded number of points is $w_{\text{sup}}(t, r) := \max_r \mu_p(\mathcal{F}_{t,r})$. Ahlswede and Khachatrian [\[2\]](#page--1-4) had considered the case $p = 1/m$ earlier, and their argument (which differs from that of Dinur and Safra) extends to all *p* < 1/2 as well. Recently [[11](#page--1-5)] we have extended these results to all values of *p*, determining in addition all extremal families; they are all of the form $\mathcal{F}_{t,r}$, and the maximum μ_p measure of a *t*-intersecting family on n points is $w(n, t, r) := \max_{r \leq \frac{n-t}{2}} \mu_p(\mathcal{F}_{t,r}).$

2 It is natural to ask what happens when we allow our families to depend on *infinitely* many points rather than on an *unbounded* number of points. In Section [4](#page--1-6) we show that when $p < 1/2$, the maximum μ_p measure of a *t*-intersecting family on infinitely many points is still max_r $\mu_p(\mathcal{F}_{t,r})$, and furthermore all extremal families are of the form $\mathcal{F}_{t,r}.$ We also determine the answer when $p \geq 1/2$.

Theorem 1.1. Let $t > 1$, let $p \in (0, 1)$, and let F be a measurable t-intersecting family on infinitely many points.

(a) If $p < 1/2$ *then* $\mu_p(\mathcal{F}) \leq w_{\text{sup}}(t, p)$. Furthermore, if $\mu_p(\mathcal{F}) = w_{\text{sup}}(t, p)$ *then* (up to a null set) $\mathcal F$ corresponds to an extremal family $\mathcal{F}_{t,r}.$

<https://doi.org/10.1016/j.disc.2018.09.017> 0012-365X/© 2018 Elsevier B.V. All rights reserved.

E-mail address: [yuvalfi@cs.technion.ac.il.](mailto:yuvalfi@cs.technion.ac.il)

- *(b) If* $p = 1/2$ *then* $\mu_p(\mathcal{F}) \le 1/2$ *. Furthermore, if* $\mu_p(\mathcal{F}) = 1/2$ *then* $t = 1$ *; in this case* \mathcal{F} *need not correspond to an extremal family* $\mathcal{F}_{t,r}$.
- *(c) If* $p > 1/2$ *then* $\mu_p(\mathcal{F}) \le 1$ *, and there is an example of an* \aleph_0 *-intersecting family satisfying* $\mu_p(\mathcal{F}) = 1$ *for all p* > 1/2*.*

Ahlswede and Khachatrian [\[2](#page--1-4)] considered the analog of their complete intersection theorem to the *Hamming scheme*, in which the objects of study are subsets of \mathbb{Z}_m^n under the uniform measure. Such a subset is *t-agreeing* if any two vectors agree on at least *t* coordinates. They showed that the original complete intersection theorem implies that the maximum measure of a *t*-agreeing subset of \mathbb{Z}_m^n for unbounded *n* is max_r $\mu_{1/m}(\mathcal{F}_{t,r})$. In Section [5](#page--1-7) we extend their work to families in which any two vectors have *t* coordinates which differ by at most *s* − 1, showing that the maximum measure in this case is $\max_{r} \mu_{s/m}(\mathcal{F}_{tr})$. We also determine all extremal families.

Theorem 1.2. Let $n, m, t \geq 1$ and $s \leq m/2$, and let $\mathcal F$ be a t-agreeing subset of $\mathbb Z_m^n$. The normalized measure of $\mathcal F$ is at most $w(n, t, s/m)$. Furthermore, if $s < m/2$ (or $m = 2$, $s = 1$ and $t > 1$) and the normalized measure of F is exactly $w(n, t, s/m)$, then ${\cal F}$ corresponds to an extremal family ${\cal F}_{t,r}.$

The proofs of both results rely on new versions of Katona's circle argument, described in Section [3.](#page--1-8)

2. Preliminaries

We use [n] for {1, \dots, n }, $\binom{[n]}{k}$ for all subsets of [n] of size k , and $\binom{[n]}{\geq k}$ for all subsets of [n] of size at least k . We denote by 2 *A* the set of all subsets of *A*. The binomial distribution with *n* trials and success probability *p* is denoted Bin(*n*, *p*). We will need the following basic definitions.

Definition 2.1. A *family on n points* is a collection of subsets of [n]. A family $\mathcal F$ is *t*-intersecting if any two sets in $\mathcal F$ have at least *t* points in common. Two families F , G are *cross-t-intersecting* if any set in F has at least *t* points in common with every set in \mathcal{G} .

A family F on *n* points is *monotone* if whenever $A \in \mathcal{F}$ and $B \supseteq A$ then $B \in \mathcal{F}$. Given a family F, its up-set $\langle \mathcal{F} \rangle$ is the smallest monotone family containing F, which is $\langle F \rangle = \{ B \supset A : A \in F \}.$

When $t = 1$, we will drop the parameter t : intersecting family, cross-intersecting families.

Definition 2.2. For any $p \in (0, 1)$ and any *n*, the product measure μ_p is a measure on the set of subsets of [*n*] given by

$$
\mu_p(A) = p^{|A|}(1-p)^{n-|A|}.
$$

For $n \ge t \ge 1$ and $p \in (0, 1)$, the parameter $w(n, t, p)$ is the maximum of $\mu_p(\mathcal{F})$ over all *t*-intersecting families on *n* points.

For $t \geq 1$ and $p \in (0, 1)$, the parameter $w_{\text{sup}}(t, p)$ is given by

$$
w_{\sup}(t, p) = \sup_{n} w(n, t, p).
$$

It is not hard to see that we can also define $w_{\text{sup}}(t, p)$ as a limit instead of a supremum, since $w(n, t, p)$ is non-decreasing in *n*. Indeed, every *t*-intersecting family on *n* points can be extended to a *t*-intersecting family on *n* + 1 points having the same μ_p measure.

The optimal families in the weighted complete intersection theorem, named after Frankl [\[12\]](#page--1-9), are described in the following definition.

Definition 2.3. For $t \ge 1$ and $r \ge 0$, the (t, r) -*Frankl family* on *n* points is the *t*-intersecting family

$$
\mathcal{F}_{t,r} = \{A \subseteq [n] : |A \cap [t+2r]| \ge t+r\}.
$$

A family F on *n* points is *equivalent* to a (t, r) -Frankl family if there exists a set $S \subseteq [n]$ of size $t + 2r$ such that

 $\mathcal{F} = \{A \subseteq [n] : |A \cap S| \ge t + r\}.$

The following theorem, proved in [\[11\]](#page--1-5), is the μ_p version of Ahlswede and Khachatrian's complete intersection theorem.

Theorem 2.1. Let $n > t > 1$ and $p \in (0, 1)$. If F is t-intersecting then

$$
\mu_p(\mathcal{F}) \leq \max_{r:t+2r\leq n} \mu_p(\mathcal{F}_{t,r}).
$$

Moreover, unless t $= 1$ *and* $p \ge 1/2$ *, equality holds only if* $\mathcal F$ *is equivalent to a Frankl family* $\mathcal F_{t,r}$ *.*

 $When\ t = 1\ and\ p > 1/2, the\ same\ holds\ if\ n+t\ is\ even, and\ otherwise\ \mathcal{F} = \mathcal{G} \cup \binom{[n]}{\geq \frac{n+t+1}{2}}\ where\ \mathcal{G} \subseteq \binom{[n]}{\geq \frac{n+t-1}{2}}\ contained\$ (*n*−1 *n*+*t*−1 2) *sets.*

Download English Version:

<https://daneshyari.com/en/article/11001893>

Download Persian Version:

<https://daneshyari.com/article/11001893>

[Daneshyari.com](https://daneshyari.com)