ARTICLE IN PRESS

Data in Brief ■ (■■■) ■■■-■■

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Water vapor sorption and glass transition temperatures of phase-separated amorphous blends of hydrophobically-modified starch and sucrose

Job Ubbink^{a,*}, Thomas Zwick^b, David Hughes^c, Gabriela Badolato Bönisch^b

^a Food Science and Nutrition Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA

^b DSM Nutritional Products Ltd, Research Center Formulation & Application, P.O. Box 2676, 4002 Basel, Switzerland

^c H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

ARTICLE INFO

ABSTRACT

Article history: Received 14 June 2018 Received in revised form 17 June 2018 Accepted 24 August 2018	 This article contains water vapor sorption data obtained on amorphous blends of octenyl succinic acid-modified (denoted as hydrophobically modified starch; HMS) and sucrose (S) in the anhydrous weight HMS/S ratios between 100/0 and 27/75. The water vapor sorption data was obtained gravimetrically. The amorphous state of the blends was confirmed by X-ray diffraction. The glass transition temperatures of the phase-separated blends are listed; the blends show phase separation into a sucrose-rich phase and a HMS-rich phase, the composition of which varies with the blend ratios. The sucrose-rich phase is characterized by a glass transition temperature T_{g,lower} that is 40 to 90 K lower than the glass transition temperature T_{g,upper} of the HMS-rich phase. © 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.carbpol.2018.06.056

* Corresponding author.

https://doi.org/10.1016/j.dib.2018.08.105

2352-3409/© 2018 Published by Elsevier Inc. This is an open access article under the CC BY license

54 (http://creativecommons.org/licenses/by/4.0/).

Please cite this article as: J. Ubbink, et al., Water vapor sorption and glass transition temperatures of phase-separated amorphous blends of hydrophobically-modified starch and sucrose, Data in Brief (2018), https://doi.org/10.1016/j.dib.2018.08.105

E-mail address: jubbink@calpoly.edu (J. Ubbink).

ARTICLE IN PRESS

J. Ubbink et al. / Data in Brief ■ (■■■) ■■■-■■■

Specifications table

Subject area More specific	Physical chemistry Hydrocolloids, carbohydrate polymers, phase transitions
subject area	Table (Mater use a comption along transition data) former (V you diffusction
Type of data	Table (Water vapor sorption, glass transition data), figure (X-ray diffraction, Water vapor sorption isotherms
How data was	Water vapor sorption data (gravimetric analysis); X-ray diffraction data (Phillip
acquired	X'pert Pro diffractometer (Panalytical)); Differential Scanning Calorimetry (Dis- covery DSC, TA Instruments)
Data format	Analyzed data
Experimental factors	Spray-dried blends of Octenyl succinic acid-modified starch and sucrose in the anhydrous weight ratios 100/0, 90/10, 80/20, 60/40, 45/55 and 25/75.
Experimental	Spray-dried blends were water activity-equilibrated at water activities 0.11, 0.22
features	0.33, 0.43, 0.54, 0.68 and 0.75 ($T = 298$ K). Water vapor sorption was determine gravimetrically until equilibrium was achieved (1200 hours). Water activity- equilibrated samples were analyzed for eventual crystallinity by X-ray diffractio and for the glass transitions of the phase separated blends (sucrose-rich and modified starch-rich phases) by Differential Scanning Calorimetry.
Data source location	NA
Data accessibility	NA
Related research article	D. J. Hughes, G. Badolato Bönisch, T. Zwick, C. Schäfer, C. Tedeschi, B. Leuenberge F. Martini, G. Mencarini, M. Geppi, M. A. Alam, J. Ubbink, Phase separation in amorphous hydrophobically-modified starch - sucrose blends: Glass transition, matrix dynamics and phase behavior, Carbohydrate Polymers (in press)

Value of the data

• We present a broad set of water vapor data on blends of hydrophobically modified starch and sucrose with a systematic variation in composition. The water vapor data are obtained in the range between 0.11 and 0.75 at T = 298 K.

 Data on the glass transition temperatures of the phase-separated blends is valuable in the context of the understanding of the phase behavior of amorphous phase-separated systems.

These data allow the exploration of the effect of composition on water vapor sorption behavior in the glass transition range.

1. Data

97 Spray-dried blends of hydrophobically-modified starch and sucrose were water activity-98 equilibrated at water activities 0.11, 0.22, 0.33, 0.43, 0.54, 0.68 and 0.75 (T = 298 K). Water vapor 99 sorption was determined gravimetrically until equilibrium was achieved (1200 h). Water activity-100 equilibrated samples were analyzed for eventual crystallinity by X-ray diffraction and for the glass 101 transitions of the phase separated blends (sucrose-rich and modified starch-rich phases) by Differ-102 **Q2** ential Scanning Calorimetry (Tables 1–4 and Fig. 1). 103

The water vapor sorption data in Fig. 2 are fitted by the GAB equation:

$$\mathbf{Q}'_{w} = \frac{KCW_{m}a_{w}}{(1 - Ka_{w}) \cdot (1 - Ka_{w} + KCa_{w})}$$

108 where K, C and $W_{\rm m}$ are fitting coefficients [3].

> Please cite this article as: J. Ubbink, et al., Water vapor sorption and glass transition temperatures of phase-separated amorphous blends of hydrophobically-modified starch and sucrose, Data in Brief (2018), https://doi.org/10.1016/j.dib.2018.08.105

2

84 85

86

87

88

89

90

91

96

104 105 106

107

Download English Version:

https://daneshyari.com/en/article/11001972

Download Persian Version:

https://daneshyari.com/article/11001972

Daneshyari.com