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A B S T R A C T

Traffic signal control plays a pivotal role in reducing traffic congestion. Traffic signals cannot be adequately
controlled with conventional methods due to the high variations and complexity in traffic environments. In
recent years, reinforcement learning (RL) has shown great potential for traffic signal control because of its high
adaptability, flexibility, and scalability. However, designing RL-embedded traffic signal controllers (RLTSCs) for
traffic systems with a high degree of realism is faced with several challenges, among others system disturbances
and large state-action spaces are considered in this research.
The contribution of the present work is founded on three features: (a) evaluating the robustness of different

RLTSCs against system disturbances including incidents, jaywalking, and sensor noise, (b) handling a high-
dimensional state-action space by both employing different continuous state RL algorithms and reducing the
state-action space in order to improve the performance and learning speed of the system, and (c) presenting a
detailed empirical study of traffic signals control of downtown Tehran through seven RL algorithms: discrete
state Q-learning( ), SARSA( ), actor-critic( ), continuous state Q-learning( ), SARSA( ), actor-critic( ), and
residual actor-critic( ).
In this research, first a real-world microscopic traffic simulation of downtown Tehran is carried out, then four

experiments are performed in order to find the best RLTSC with convincing robustness and strong performance.
The results reveal that the RLTSC based on continuous state actor-critic( ) has the best performance. In addition,
it is found that the best RLTSC leads to saving average travel time by 22% (at the presence of high system
disturbances) when it is compared with an optimized fixed-time controller.

1. Introduction

Traffic control is of a vital importance in densely populated cities.
The ineffective control of traffic can cause significant costs for drivers
owing to the increased wasted time, negative effects on the environ-
ment due to vehicle emissions and detrimental impacts on the economy
due to increased fuel consumption [1]. The main components of a
traffic control system are traffic signal control, ramp-metering, variable
speed limit enforcement, and dynamic route guidance [2]. Within such
a context, scheduling of traffic signals is a critical traffic control chal-
lenge. Inefficiency in traffic signal timing attributed to the inability of
adapting to prevailing traffic conditions leads to different small con-
gested areas that can in turn cause larger traffic jams [3]. In recent
years, computational intelligence techniques such as fuzzy logic [4–6],

neural networks [7,8], and reinforcement learning (RL) [9–11] have
shown their potential for designing adaptive traffic signal controllers. In
this paper, RL [12] is applied because of its online learning ability to
gradually improve its performance, its adaptability to different traffic
states as well as its ability to work without knowing an explicit model of
the stochastic traffic environment. An RL-embedded traffic signal con-
troller (RLTSC) has the capability to learn through experience by dy-
namically interacting with the traffic environment in order to reach its
objective. Each RLTSC examines different green time durations (ac-
tions) in different traffic situations (states) and determines the best
sequence of them based on the received scalar reward signals (feed-
back) which indicate the quality of the selected action. Each RLTSC
which controls one intersection learns over time to obtain a signal
timing plan that optimizes the sum of rewards in the future (return).
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RL algorithms can be either model-based [13] or model-free
[9,14,15]. Model-based approaches need to initially employ and/or
learn the environmental model (i.e. traffic system) in order to compute
the optimal policy (signal timing plan). On the other hand, a model-free
approach (e.g. SARSA, Q-learning, and actor-critic) does not rely on the
estimation of the environmental model; instead, it progressively ac-
quires the optimal policy by interacting with the environment and
getting experience [16]. Both approaches have their strengths and
weaknesses regarding their convergence guarantees, convergence
speed, and ability to plan [12]. However, in the model-based ap-
proaches, obtaining an accurate model of the environment can be
challenging and a slight bias in the model may lead to a strong bias in
the policy. Thus, we employ model-free approaches, including Q-
learning, SARSA, and actor-critic, which also makes the research more
appealing for field deployment.
Conventional model-free RL algorithms require storing distinct es-

timations of each state-action value (for SARSA and Q-learning algo-
rithms) or each state value (for the critic part of actor-critic algorithms)
in lookup tables. Although they are computationally less demanding,
their learning process can be slow when the state-action space is large.
The reason is that the agent needs to experience all possible states. In
this context, there are a couple of solutions for coping with a large state-
action space. A first step to the solution is to employ continuous-state
RL. In this version of RL, the knowledge gained from observations in
each state (traffic condition) is applied to similar states by means of
function approximators [17]. The application of previously acquired
knowledge to unseen states generally leads to faster convergence. To
handle the complexity of the state space, the state space is first mapped
onto a feature space by using a feature function. Then the values of
states are approximated in the feature space, instead of the original
state space. Finding good function approximators of appropriate com-
plexity is the key to the success of continuous state RL. The second
solution is to reduce the state-action space by efficiently removing
unnecessary and less effective state variables and actions in order to
decrease the number of interactions needed to learn the optimal timing
plan. An ineffective reduction of the state-action space may lead to
undesired results because it cannot provide the agent with the required
information that might be useful in decision making. Thus, it should be
investigated which state variables and actions based on the conditions
of the study area should be included in the state-action space so that
optimal signal timing plans can be learned successfully. However, even
if some trivial state variables are eliminated, the state-action space can
still be too large for successfully being handled in discrete state RL. The
third solution which is the combination of solutions 1 and 2 uses both
state-action space reduction and continuous state RL. The first con-
tribution of the present paper is to adopt all these three solutions and
compare their results.
Regarding function approximation in continuous state RL, there are

several different types of function approximators that are categorized
into linear and non-linear function approximators. The values of states
are represented by a weighted linear sum of a set of non-linear ex-
tracted features in linear function approximators or are sometimes re-
presented by non-linear approximators such as neural networks. While
non-linear function approximators may approximate an unknown
function with better accuracy, linear function approximators are better
to understand, simpler to implement, and faster to compute [18]. Also,
linear function approximators are able to estimate non-linear value
functions due to the employed basis function [12]. Because of the ad-
vantages of linear function approximators, linear function approx-
imators are employed in this paper. A popular method to extract fea-
tures in a linear function approximator is tile coding that splits the state
space into separate tiles and assigns one feature to each tile [19].
Striking an empirical balance between representational power and
computational cost is one of the most important advantages of tile
coding that makes it suitable to be employed in this research.
In this article, a detailed empirical study of traffic signals control in

downtown Tehran through seven discrete and continuous state RL al-
gorithms, namely discrete state Q-learning( ), discrete state SARSA( ),
discrete state actor-critic( ), continuous state Q-learning( ), con-
tinuous state SARSA( ), continuous state actor-critic( ) [12,18], and
continuous state residual actor-critic( ) [20] is conducted. The traffic
congestion in downtown Tehran is very heavy. Its traffic control sys-
tems are old-fashioned and most traffic signals are still manually con-
trolled by police officers that can lead to inefficient traffic control.
One of the most significant challenges in designing the RLTSC, is the

robustness of them against different system disturbances that almost
always happen in real-world applications. System disturbances, based
on their intensity level, can disturb either the normal performance or
even the convergence of the system. We consider three different kinds
of system disturbances: jaywalking, incidents, and sensor noise. In the
study area, observation surveys illustrated that many pedestrians prefer
making the illegal crossing to waiting for the green pedestrian signal.
Jaywalking which is performed by impatient pedestrians during the red
pedestrians’ signal increase the stochasticity of the traffic environment
and disturb the performance of the RLTSCs. Incidents as a nonrecurring
traffic congestion cause [21] that disturb the traffic flow, make un-
expected delays in the movements of the vehicles and consequently
make the traffic environment more nonstationary for the RLTSCs.
Moreover, due to the obsolescence of the traffic control infrastructures,
traffic signal sensors can be noisy and imperfect. In fact, the RLTSCs’
observations of the state as well as the reward signal are noisy. That is,
the observed number of vehicles waiting on the approaching streets are
different than their true values. Sensor noise, unlike the first two factors
that have an indirect effect, directly disrupts the RLTSCs’ performance.
This represents a difficult class of learning problem owing to the sto-
chastic nature of the traffic environment together with high-order dy-
namics (i.e. variable traffic flows) and sensor noise. The RLTSCs should
be able to autonomously respond to a changing environment with
stochasticity and random shocks. In the literature, different RLTSCs
have been investigated, but without thoroughly examining the robust-
ness of them against system disturbances. Thus, another contribution of
this paper is the comprehensive investigation of the RLTSCs’ robustness
to the system disturbances. In this context, a real-world microscopic
traffic simulation of the upper downtown core of Tehran city is carried
out. In this simulation, a three-dimensional traffic network (i.e. slope of
the streets are considered) with real changing traffic flows over 6 h in
the morning (6:00 am to 12:00 pm) is considered.

Outline of this paper. The remaining part of this paper is organized
as follows: Section 2 reviews the related work and summarizes the gaps
in the existing literature. Section 3 describes the operation of discrete
and continuous state RL. Section 4 demonstrates the traffic network and
microscopic traffic simulation of the central area of Tehran. Section 5
technically explains the design of the RLTSCs and the way they work.
System disturbances, namely incidents, jaywalking, and sensor noise
are explained in Section 6. Section 7 describes a series of experiments
and their results and Section 8 provides a discussion of our findings.
Finally, Section 9 concludes the paper and proposes some directions for
future work.

2. Related work

Traffic signal control has been one of the major challenges for
controlling traffic congestion in urban areas. Different systems and
methods based on complex mathematical models have been proposed
in order to optimize traffic signal parameters in response to diverse
traffic situations. The Split Cycle Offset Optimization Technique
(SCOOT) [22] and the Sydney Coordinated Adaptive Traffic System
(SCATS) [23] are two successful commercial systems that have been
installed in more than one hundred cities worldwide. Although these
systems have alleviated traffic congestion somewhat, they may not be
efficient in handling the traffic networks without well-defined traffic
flow patterns (e.g. morning and afternoon peak hours). Also, they
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