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a b s t r a c t 

Experimental optimization is prevalent in many areas of artificial intelligence including machine learn- 

ing. Conventional methods like grid search and random search can be computationally demanding. Over 

the recent years, Bayesian optimization has emerged as an efficient technique for global optimization of 

black-box functions. However, a generic Bayesian optimization algorithm suffers from a “cold start” prob- 

lem. It may struggle to find promising locations in the initial stages. We propose a novel transfer learning 

method for Bayesian optimization where we leverage the knowledge from an already completed source 

optimization task for the optimization of a target task. Assuming both the source and target functions 

lie in some proximity to each other, we model source data as noisy observations of the target function. 

The level of noise models the proximity or relatedness between the tasks. We provide a mechanism 

to compute the noise level from the data to automatically adjust for different relatedness between the 

source and target tasks. We then analyse the convergence properties of the proposed method using two 

popular acquisition functions. Our theoretical results show that the proposed method converges faster 

than a generic no-transfer Bayesian optimization. We demonstrate the effectiveness of our method em- 

pirically on the tasks of tuning the hyperparameters of three different machine learning algorithms. In 

all the experiments, our method outperforms state-of-the-art transfer learning and no-transfer Bayesian 

optimization methods. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Experimental optimizations are ubiquitous in many areas of Ar- 

tificial Intelligence (AI). An example from machine learning is tun- 

ing the hyperparameters of a deep neural network on a large data 

that can consume a significant amount of computational time and 

memory for training. The hyperparameters here are architectural 

parameters like number of neurons in a hidden layer, number 

of hidden layers and model parameters like learning rate of the 

stochastic gradient descent algorithm that learns the model. Con- 

ventional strategies such as grid search and random search become 

inefficient with a large number of hyperparameters. 

Recently, Bayesian optimization has become popular as an 

efficient framework for tuning hyperparameters ( Snoek, Larochelle, 

& Adams, 2012 ). Bayesian optimization offers efficient solutions for 

global optimization problems especially when function evaluation 

is expensive ( Brochu, Cora, & De Freitas, 2010; Mockus, 1994; 
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Shahriari, Swersky, Wang, Adams, & de Freitas, 2016 ). Other appli- 

cations of Bayesian optimization include sequential experimental 

design ( Brochu et al., 2010 ), learning optimal robot mechanics 

( Lizotte, Wang, Bowling, & Schuurmans, 2007 ), optimal sensor 

placement ( Garnett, Osborne, & Roberts, 2010 ), environmental 

monitoring ( Marchant & Ramos, 2012 ), synthetic gene design 

( González, Longworth, James, & Lawrence, 2015 ) and synthesizing 

polymer fibre materials ( Li et al., 2017 ). Bayesian optimization 

can also be used in optimizing any expert systems that have 

hyperparameters. It has recently been applied in tuning the 

hyperparameters of a credit scoring system ( Xia, Liu, Li, & Liu, 

2017 ), and building an autonomous system for recommending new 

materials ( Ohno, 2018 ). 

Bayesian optimization uses a probabilistic framework to model 

the objective function. A non-parametric Gaussian process (GP) 

( Williams & Rasmussen, 2006 ) is often the default choice as a prior 

over the unknown function. Bayesian optimization then employs a 

surrogate utility function namely acquisition function to decide the 

next point for evaluation. Acquisition function strategically trades 

off exploration and exploitation to find the next point. It “explores”

the regions where epistemic uncertainty about the function is high, 

and “exploits” regions where function values are expected to be 
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higher in a weighted manner. Unlike the original objective func- 

tion, acquisition functions are analytic and cheap functions. This 

makes them amenable to the usual global optimization algorithm. 

However, a generic Bayesian optimization may suffer from a 

”cold start” problem when it tackles a new optimization function 

especially if the input space is high dimensional or the objec- 

tive function landscape is complex. Due to the absence of proper 

knowledge, it might struggle in the beginning and require more 

function evaluations before converging to promising locations. Ini- 

tial samples thus add cost to the optimization without contributing 

much to the process. In AI applications like robotics, Bayesian op- 

timization might struggle in the initial stages and therefore take 

more time to generalize to a good configuration. Similarly, hy- 

perparameter optimization in machine learning can also be costly 

when the model is complex, and data is large. Reducing the cold 

start time hence remains an important problem to solve. 

Bayesian optimization operates by balancing two strategies, ex- 

ploration of unknown region and exploitation of predicted good re- 

gion. Most of the functions have a small good region and a large 

swath of low value region. Initially when we start with random 

samples, they will be low value with high probability, and hence 

there will not be much to exploit. Therefore, initially, Bayesian op- 

timization algorithm mostly performs exploration, which is more 

commonly known as the cold start problem. One can largely re- 

duce this cold start problem by providing knowledge from related 

tasks. Using this knowledge, one can incorporate better idea about 

the good areas of the function, and hence avoid the cold start prob- 

lem to a large extend. 

There are different models developed in this context. 

Bardenet, Brendel, Kégl, and Sebag (2013) developed a trans- 

fer learning method where a surrogate ranking scheme is used 

to optimize similar tasks. A Gaussian process is used to build a 

common ranking scheme for hyperparameters from different tasks. 

Bardenet et al. (2013) assume strong similarity in ranking function 

across the tasks. Yogatama and Mann (2014) developed a method 

that utilizes the knowledge from the source tasks by modeling 

the deviations from the average performance of different hyperpa- 

rameters per task. Their method also assumes higher similarity in 

the deviations from the means of the previous tasks. Additionally, 

none of them has provided theoretical guarantees on convergence. 

Hence, transfer learning for Bayesian optimization, which can handle 

differently related tasks and provide theoretical guarantees, is still an 

open problem. 

Addressing this, we develop a new framework for transfer 

learning. We assume the source task and target task lie within 

some proximity to each such that they become similar within an 

appropriate noisy envelope. Both of the functions are assumed to 

be same within the noise envelope. This practically allows us to 

use source data as noisy measurements for target function. We ad- 

just the width of the envelope to be smaller when the tasks are 

closely related. We stretch the envelope further when tasks are 

only mildly related. We visualize this idea of the envelope in Fig. 1 . 

We show two scenarios where the source and target task differ in 

relatedness. When the tasks are similar, the width of the envelope 

is small as shown in Fig. 1 a. One can notice that this envelope is 

enough to encompass both the tasks. However, when the tasks are 

only mildly related, we accommodate the tasks by increasing the 

width of the envelope as shown in Fig. 1 b. This way, we envisage a 

scheme where we adjust the envelope to accommodate source and 

target tasks. 

When information is correct (tasks are similar), then Bayesian 

optimization would recommend better samples, providing faster 

convergence. Our method ensures that the information added re- 

mains correct by providing a mechanism to make that zero when 

tasks are different. When the tasks are totally different, the en- 

velopes will be infinitely wider and the observations from the 

source task will be ignored for optimization and it will roll back 

to a generic Bayesian optimization scheme. This adaptive behavior 

underpins the flexibility of our framework to address different re- 

latedness across tasks and reach a decision on either transferring 

or discarding the knowledge from the source task. 

A constructive example could be handwritten digit recognition 

and the varying difficulty of distinguishing between digits. For ex- 

ample, 1 vs 2 or 1 vs 5 may have similar complexity requirement 

of the classifiers (similar sets of hyperparameters) as the digits are 

quite distinct, and hence require simpler models. On the contrary 

5 vs 6 may require more complex models (different sets of hyper- 

parameters). When the two tasks are similar, our method uses a 

smaller noise envelope that reflects the similarity between the two 

tasks. When we have to use different sets of hyperparameters (dif- 

ferent tasks), we use a higher noise envelope in our method. Basi- 

cally, the noise envelope helps in adding the observations from the 

source task with some level of uncertainty that reflects our belief 

on the similarity between the source and target task. 

To realize our proposed framework, we model source task as 

noisy observations of the target task. We modify the covariance 

matrix of the Gaussian process where source points are added with 

more noise. We then estimate the noise variance for the source en- 

velope from the observational data in a Bayesian setting. Joy, Rana, 

Gupta, and Venkatesh (2016) have reported a preliminary study of 

the proposed method. Current paper ushers in deriving theoretical 

guarantees on the convergence of the proposed method. 

We analyse the convergence of our algorithm using both Gaus- 

sian process upper confidence bound (GP-UCB) ( Srinivas, Krause, 

Kakade, & Seeger, 2010 ) and Expected improvement (EI) 

( Mockus, Tiesis, & Zilinskas, 1978 ) acquisition functions. 

Srinivas et al. (2010) and Wang and de Freitas (2014) provide 

theoretical guarantees for both GP-UCB and EI in a no-transfer set- 

ting respectively. They derive an upper bound on the cumulative 

regret and show that the growth in regret is sublinear. Cumulative 

regret is the sum of instantaneous regret which is the difference 

between the global optimum and the current observation. We 

derive a tighter upper bound on the cumulative regret for both the 

acquisition functions when our proposed transfer learning algo- 

rithm is used. Our bounds show improved convergence properties 

of the proposed algorithm. 

We demonstrate the flexibility of our method simulating sce- 

narios where the tasks are either very similar or only mildly re- 

lated. We further employ our algorithm in tuning the hyperparam- 

eters of three machine learning algorithms. We develop a novel 

hyperparameter tuning setup where we select a small fraction of 

the training data for the source task and the whole for the target. 

Both of these tasks are evaluated on a held out validation data. 

The observations for the source can be generated cheaply since it 

uses only a small fraction of the training data. We then utilize this 

knowledge to tune the hyperparameters for the target task. Here 

the tasks differ in functional complexity even though they are from 

the same data distribution. In the context of hyperparameter tun- 

ing, we also evaluate our method on the tasks where the source 

and target data are from different data distributions. We select two 

state-of-the-art transfer learning methods ( Bardenet et al., 2013; 

Yogatama & Mann, 2014 ) and the generic no-transfer Bayesian op- 

timization method as the baselines for our experiments. 

The sketch of the paper is as follows: we present related back- 

ground on Bayesian optimization in Section 2 . Section 3 describes 

the proposed method and analyze its convergence properties. We 

further detail the experimental set-up and results in Section 4 . We 

finally conclude our work in Section 5 . 



Download English Version:

https://daneshyari.com/en/article/11002308

Download Persian Version:

https://daneshyari.com/article/11002308

Daneshyari.com

https://daneshyari.com/en/article/11002308
https://daneshyari.com/article/11002308
https://daneshyari.com

