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We review the simplex method and two interior-point methods (the affine scaling and 
the primal-dual) for solving linear programming problems for checking avoiding sure loss, 
and propose novel improvements. We exploit the structure of these problems to reduce 
their size. We also present an extra stopping criterion, and direct ways to calculate feasible 
starting points in almost all cases. For benchmarking, we present algorithms for generating 
random sets of desirable gambles that either avoid or do not avoid sure loss. We test 
our improvements on these linear programming methods by measuring the computational 
time on these generated sets. We assess the relative performance of the three methods 
as a function of the number of desirable gambles and the number of outcomes. Overall, 
the affine scaling and primal-dual methods benefit from the improvements, and they both 
outperform the simplex method in most scenarios. We conclude that the simplex method 
is not a good choice for checking avoiding sure loss. If problems are small, then there is no 
tangible difference in performance between all methods. For large problems, our improved 
primal-dual method performs at least three times faster than any of the other methods.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In statistical modelling, we often face issues such as limited structural information about dependencies, lack of data, 
limited expert opinion, or even contradicting information from different experts. Various authors [16,17,14,11] have argued 
that these issues can be handled by modelling our beliefs using sets of desirable gambles. A gamble represents a reward (e.g. 
monetary) that depends on an uncertain outcome. We can model our beliefs about this outcome by stating a collection of 
gambles that we are willing to accept. Such set is called a set of desirable gambles. Through duality, every set of desirable 
gambles is mathematically equivalent to a set of probability distributions.

If there are no combinations of desirable gambles that result in a certain loss, then we say that our set of desirable gam-
bles avoids sure loss [16,17]. To verify whether a set of desirable gambles avoids sure loss, we can solve a linear programming 
problem [14, p. 151].

Linear programs for checking avoiding sure loss have been studied for instance in [15,9]. However, these studies focus 
on forming linear programs and do not mention which algorithms we should use. In the early ’90s, Walley [14, p. 551]
mentioned that Karmarkar’s method can be considered for solving large linear programs. However, nowadays Karmarkar’s 
method is considered obsolete in favour of other interior point methods such as affine scaling and primal-dual methods [1].
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The simplex method is one of the oldest and simplest methods, and the affine scaling method is an improved version 
of Karmarkar’s method, whilst the primal-dual method is currently considered one of the best general purpose methods. In 
previous work, we presented an initial comparative study of these three methods for checking avoiding sure loss [8]. In that 
study, we slightly reduced the size of the problems and proposed two improvements: an extra stopping criterion to detect 
unboundedness more quickly, and a direct way to calculate feasible starting points. There, we also quantified the impact of 
these improvements [8, Fig. 1], for the primal-dual method.

In this paper, our main goal is to elaborate on the improvements in [8], and to further develop efficient algorithms for 
checking avoiding sure loss. In particular, we study also the dual of each linear program, and we generalise the process 
to find feasible starting points. We also discuss in detail the advantages and disadvantages of each method for checking 
avoiding sure loss. For benchmarking, we provide a variety of algorithms for generating sets of desirable gambles. In a 
simulation study, we generate random sets of desirable gambles and assess the impact of our improvements. In addition, 
we provide proofs for all relevant results, including some that were stated without proof in [8].

The paper is organised as follows. Section 2 gives a brief outline of avoiding sure loss and coherence. Section 3 stud-
ies several linear programming problems for checking avoiding sure loss, and we slightly reduce the size of these linear 
programming problems. Section 4 reviews the simplex, the affine scaling and the primal-dual algorithms, and studies how 
we can improve these algorithms to check avoiding sure loss. Sections 5 and 6 present some algorithms for generating 
random sets of desirable gambles. Section 7 compares the efficiency of our improved methods. Section 8 concludes the 
paper.

2. Desirable gambles and lower previsions

In this section, we explain desirable gambles, lower previsions, avoiding sure loss, coherence, and natural extension [14]. 
We also introduce the notation used throughout.

2.1. Avoiding sure loss

Let � be a finite set of uncertain outcomes. A gamble is a bounded real-valued function on �. Let L(�) denote the set 
of all gambles on �. Let D be a finite set of gambles that a subject decides to accept; we call D the subject’s set of desirable 
gambles. The desirability axioms essentially state that a non-negative combination of desirable gambles should not produce 
a sure loss [14, §2.3.3]. In that case, we say that D avoids sure loss.

Definition 1. [14, §3.7.1] A set D ⊆L(�) is said to avoid sure loss if for all n ∈ N, all λ1, . . . , λn ≥ 0, and all f1, . . . , fn ∈D,

max
ω∈�

(
n∑

i=1

λi f i(ω)

)
≥ 0. (1)

We can also model uncertainty via acceptable buying (or selling) prices for gambles. A lower prevision P is a real-valued 
function defined on some subset of L(�). We denote the domain of P by dom P . Given a gamble f ∈ dom P , we interpret 
P ( f ) as a subject’s supremum buying price for f .

Definition 2. [14, §2.4.2] A lower prevision P is said to avoid sure loss if for all n ∈ N, all λ1, . . . , λn ≥ 0, and all f1, . . . , fn ∈
dom P ,

max
ω∈�

(
n∑

i=1

λi [ f i(ω) − P ( f i)]

)
≥ 0. (2)

Any lower prevision P induces a conjugate upper prevision P on − dom P := {− f : f ∈ dom P }, defined by P ( f ) :=
−P (− f ) for all f ∈ − dom P [14, §2.3.5]. P ( f ) represents a subject’s infimum selling price for f . P is said to be self-
conjugate when dom P = − dom P and P ( f ) = P ( f ) for all f ∈ dom P . We simply call a self-conjugate lower prevision P a 
prevision and write it as P [11, p. 41].

2.2. Coherence

Coherence is another rationality condition for lower previsions and is stronger than avoiding sure loss. Coherence requires 
that the subject’s supremum buying prices for gambles cannot be increased by considering any finite non-negative linear 
combination of other desirable gambles [14, §2.5.2]. In Section 5, we will use coherent lower previsions to generate sets of 
desirable gambles that avoids sure loss.



Download English Version:

https://daneshyari.com/en/article/11002355

Download Persian Version:

https://daneshyari.com/article/11002355

Daneshyari.com

https://daneshyari.com/en/article/11002355
https://daneshyari.com/article/11002355
https://daneshyari.com

