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A B S T R A C T

Engineering approximations of physical systems sometimes produce models in which real-valued model-based
physical-distances are added to complex-valued distances and/or (for electrical systems), real-valued current/
charge image intensities are replaced with complex-valued quantities. These models are arrived at often using ad
hoc approximations that allow infinite integrals or series to be approximated in closed form. Arriving at accurate
ad hoc approximations in a compatible analytic form is often the difficult step in the derivation of these ap-
proximations. In this paper, we show that this difficult ad hoc step can be replaced for many classes of functions
with the use of analytic continuation via Padé approximants, along with some reasonable engineering judge-
ment. We apply our approach to several existing approximations in the electrical engineering field (overhead
transmission line impedance, underground cable impedance and Green’s functions used in ground potential rise
calculations) and show that these approximations can be derived elegantly, without the need for grand leaps of
insight, and provide a basis for both distance parameters and current/charge intensities that are complex-valued.

1. Introduction

In engineering derivations, it is not uncommon to encounter infinite
series or infinite integrals that have neither a closed form solution nor
an analytic representation. While most programming languages handle
(closed form) transcendental functions (e.g., trigonometric, loga-
rithmic, exponential, etc.) as well as many non-closed-form analytic
functions (gamma function, Bessel function, etc.) we still often run into
expressions that must be evaluated by painstaking numerical integra-
tion or summation of truncated infinite series (provided we are lucky
enough to have convergent series.) Historically, to shorten the execu-
tion time of expressions that could not be evaluated strictly with a finite
number of elementary operations, it was necessary to find accurate
approximations. Even today, when such expressions occur in an itera-
tive process (e.g., the solution of nonlinear equations or optimization)
approximations are necessary to make the execution time practical.
Finding approximations in an analytic form is often an arduous task
that in addition to hard work requires an insightful moment when the
researcher hits upon one compatible analytic expression that can be
substituted for another, allowing the integral to be represented in
closed form or an infinite series to be replaced by an expression with a
finite number of terms. These approximations are deemed successful
when they yield acceptable accuracy over a parameters space that

captures the bulk of the practical engineering applications. Developing
these approximations historically required intensive trial and error
methods [2 4] or numerically fitting the coefficients in the approx-
imations [5] but resulted in surprisingly accurate approximations. What
follows is a discussion of several hard-won approximations used for
approximating overhead and underground transmission lines, that we
will show could have been methodically obtained without relying on
epiphanic insight had analytic continuation via Padé approximants
been used. Finally, to demonstrate the generality of this approach, we’ll
apply the technique to the approximation of the Green’s functions
(functions widely used in physics and engineering problems) en-
countered when the solution of the electrical ground-grid design/ana-
lysis problem is desired for a multilayered earth model.

1.1. Dubanton’s insight

Arguably, the most of profound of the insights leading to an accu-
rate approximation across a wide range of frequencies for the conductor
impedance with an earth return was that of Dubanton, reported by
Gary, giving the approximations in (1) and (2) for the self- and mutual-
impedances, respectively, of overhead transmission lines [1]. Note that
the integrals in these equations represent the earth correction terms and
the definitions of the distance parameters are graphically depicted in
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Fig. 1, where r is the conductor radius.
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The “complex distance” parameter, p(0), is defined by,
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jωμσ

p
jωμ σ

1 , 1
0

0 (3)

where ω is radian frequency, μ is the earth’s permeability, which is
assumed to be that of free space, μ0, and σ is the earth’s conductivity.

Gary reports that these approximations were likely obtained by
“intuitive insight” and are given without proof. While there is a certain
nonchalance about these approximations today, the insight leading to
them is quite stunning when viewed from a time that predates them.
Dubanton replaced the infinite integral by simply adding a complex-
valued distance parameter, in the specific form of p0, to the height
parameter in the “free space” logarithmic term. Why would one predict
such an expression would work?

1.2. Deri’s et al.’s insight

Deri et al. [2], in a successful attempt to put a derivation behind the
Dubanton approximations, invoked the following approximation that
also seems to have been intuitively arrived at. (This same approx-
imation—and approach—was used four years later to approximate the
integral encountered in derivation of the impedance of underground
conductors buried in separate conduits [3].)
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1.3. Alvarado’s and Betancourt’s insight

Alvarado and Betancourt [4] were able to show that a better ap-
proximation than that used by Deri et al., is:
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Alvarado remembers that “Yes, we started with Deri. Then we
looked at the nature of their error, which looked like a very predictable
sort of error…I had been playing with approximation formulas, and
when I saw the shape of their error curve we tried to ‘fit it’ to a formula,
but in the end, it was educated wild speculation [7].”

1.4. Wedepohl’s insight

Semlyen [8] reported that the work of Deri et al., led L. M. Wede-
pohl to conjecture that the series self-impedance of a direct-buried
underground cable whose insulation thickness was negligible could be
approximated by:
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1.5. Tylavsky’s insight

After becoming familiar with Dubanton’s equations and the proof by
Deri et al., Tylavsky worked to show that a similar approximation could
be obtained for deep underground conductors by first obtaining the
theoretically exact expressions for self- and mutual-impedances [9],
below, for the geometry shown in Fig. 2, where μr is relative perme-
ability of the earth, Kn is a modified Bessel function of the second kind
of order n, K’n, is the derivative of Kn and r is the conductor radius.
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Fig. 1. Overhead line parameter definitions.

Fig. 2. Underground cable parameter definitions.
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