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A B S T R A C T

The distribution companies will face huge challenges in upgrading the existing network due to the uncertain
integration of distributed renewable generations. In this paper, we propose a bi-level robust planning model for
active management elements (AMEs) including on-load tap changer (OLTC), electrical storage system (ESS),
capacitor bank (CB), and static VAR compensation (SVC) in order to accommodate uncertain development of
wind power and photovoltaic power. The planning problem is constructed in two levels which are investment
level and operation level. To overcome the poor convergence of the bi-level model, variables in both investment
level and operation level are associated together. After equivalent transformation for non-linear terms the
planning model can be formulated as a mixed integer second order conic programming (MISOCP) problem by
some special means such as second order conic relaxation (SOCR) and big-M approach. We address the re-
newable uncertainties in four different seasons by a typical budget uncertainty set with adjustable budget. Then
a two-stage robust mathematical model is proposed to decide a robust AME deployment scheme and solved by
column and constraint generation (CCG) algorithm.

1. Introduction

The shortage of fossil fuels and the increasing environmental pol-
lution have caused a rapid development of renewable energy around
the world [1]. The high penetration of distributed generation (DG) may
result in the bi-directional power flow and voltage violation in the
system, which promote the emergence of active distribution network
(ADN) with various distributed and controllable resources [2]. Also, the
random characteristic of intermittent DGs such as wind turbine gen-
eration (WTG) and photovoltaic generation (PVG) is a key issue in the
active distribution network planning. Therefore, how to construct an
effective planning scheme with uncertainties of renewable energies
considered is currently a great challenge for the distribution companies.

To cope with abovementioned challenge, active network manage-
ment (ANM) is usually regarded as an indispensable part in the ADN
planning to maximize the hosting capacity of DG [3] or promote
maximal utilization of clean DG power [4]. In the early time periods,
ANM is introduced to coordinate the voltage control, which mainly
includes secondary voltage regulation of on-load tap changer (OLTC)
and reactive power compensation by discrete capacitor banks (CBs) and
continuous static Var compensations (SVCs). Besides OLTC, CB and

SVC, electrical storage system (ESS) is first explored as an ANM means
in [5] and [6]. The optimal installment position and capacity of ESSs
are decided in [7], where the reactive power regulation of ESSs is also
taken into account. A two-layer configuration model for capacity of
storage system is established in [8] to decrease to power fluctuation in
the distribution feeder line. Therefore, an appropriate deployment
scheme for OLTCs, CBs, SVCs, and ESSs is of significance to maximize
the utilization of renewable DG and guarantee the system security [9].
Generally, this paper defines all active management elements (AMEs) as
network topology management means and carries out a corresponding
plan for those management means to accommodating integration of
renewable energies.

At the same time, the distribution companies would hardly predict
the exact power injection of DGs in the future since many end-users and
generation companies can make their own DG investment decisions
independently [10]. Besides, the maximum renewable DG power is
anticipated to be consumed in the low carbon policy environment.
Thus, the uncertainty nature of those renewable DGs is indispensable in
the distribution network planning when large amounts of renewable
energy resources integrated into the systems [11,12]. In this regard, the
distribution network planners need to take full consideration of the
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uncertainties of renewable DGs. The stochastic programming is widely
used to deal with these uncertainties [13,14]. In [15,16], the available
PVG or WTG power outputs were studied by the probability simulation.
In the stochastic approach, Monte Carlo method is a common-used
means to generate large-scale scenarios for PVG, WTG, load demand,
electricity price or electric vehicle based on the given probabilities
[17–19]. It is noteworthy the known probability density function is
necessary in the stochastic method [20]. However, it is hard to get the
accurate probabilities of those uncertain sources such as wind power or
solar power in the real-world application. Compared to the stochastic
programming method, robust optimization becomes a promising ap-
proach in the past few years because of its briefness [21,22]. In the
robust optimization structure, only uncertainty set or bound instead of
the probability distribution is applied to describe the volatility range of
uncertain parameters [23,24]. Generally, robust approaches have lots
of advantages: (a) an exact hard-to-obtain probability distribution is not
required [25]; (b) the optimal solution obtained can immunize against
all the realizations within the uncertainty set [26]. A two-stage robust
investment scheme involved price-elastic demand response is proposed
in [27] to get optimal investment decisions. An information-gap deci-
sion theory based robust method to solve the multiyear reinforcement
planning model of distribution network is established in [28], which
considers several kinds of uncertainty sources such as loads and elec-
tricity prices. The location and sizing of both dispatchable and inter-
mittent distributed generators in microgrid are decided in [29] by a
two-stage robust fashion, which is solved by the constraint generation
framework. All above existing researches indicate that robust optimi-
zation is an efficient method to solve the uncertainties in the distribu-
tion network planning. A transmission expansion planning model is
proposed in [30] considering the uncertainty of load demand and re-
newable energy generation described by budget set. The budget based
uncertainty set attracts extensive attention worldwide due to the ad-
justable budget by conservativeness purpose. Besides, the uncertainty
sets in different seasons should separately be modeled because there
may exist large difference among DG power curves in different seasons.
Thus, we adopt budget based adjustable polyhedral uncertainty set to
describe the joint uncertainties of WTG and PVG in this paper.

From [31], we know that the distribution system planning problem

can be divided into two levels including investment level and operation
level, and separately solved in investment and operation level. In the
investment level, the intelligent algorithms such as genetic algorithm
[32], particle swarm optimization [33] are usually used due to the
discrete variables involved [34]. The optimization model in the op-
eration level is considered as an AC optimal power flow problem be-
cause of nonlinear power flow constraints [35], which is commonly
solved by the original dual interior point method [36,37]. However,
this nonlinear characteristic cannot guarantee the global optimal so-
lution [38]. Luckily, via the second order conic relaxation (SOCR) the
branch flow model constraint can be illustrated as a convex and conic
form. This non-linear model in operation level can thus be transformed
as a second order conic programming (SOCP) problem for quickly and
efficiently solving [39]. Also, above respective manner would cause
poor convergence in upper (investment) level and much long compu-
tation time in the whole programming [40]. As we can see in [41] it
takes 20,000 iterations before the solution of the expansion model
meets the convergence requirement. Therefore, integrated solving
method by associating investment level and operation level is indis-
pensable to more quickly obtain an optimal solution.

Based on the aforementioned discussions, we propose a bi-level
robust planning model for active management elements including On-
load tap changers, electrical storage systems, capacitor banks, and static
VAR compensations. The variables in both investment level and op-
eration level are associated together to pursuit a better convergence
performance. Several equivalent transformations for non-linear terms
are then applied to express the planning model as a mixed integer
second order conic programming problem. Moreover, by introducing an
adjustable polyhedral uncertainty set in four different seasons to ad-
dress the uncertainties of renewable energies, a two-stage robust
mathematical model is formulated and solved by column and constraint
generation (CCG) algorithm.

The rest of the paper is organized as follows: In Section 2, a general
description of bi-level planning model for distribution systems is pre-
sented. Section 3 formulates the mathematical modelling of robust
model. The variable association, equivalent transformation for non-
linear terms and column-and-constraint generation algorithm are pre-
sented in Section 4. Numerical computational results and analysis on a

Nomenclature

Indices

i, j index of buses
ij index of lines
t/s index of time periods/season
n index of iteration for MP of CCG
l index of investment type
δ(j)/ψ(j) set of buses whose parent/child is bus j
B/BP/BW/BLoad/BTR/BESS/BOLTC/BCB/BSVC set of network buses/

PVG/WTG/Load buses/main-grid/ESS/OLTC/CB/SVC
ΩESS/ΩOLTC/ΩCB/ΩSVC set of investment candidate buses of ESS/

OLTC/CB/SVC
KESS/KSVC set of investment type available for ESS/SVC
E set of branches
rij/xij resistance/reactance of line
C inv/Cope investment cost/operation cost
cl

ESS/cCB/cl
SVC/cOLTC installation price for ESS/CB/SVC/OLTC

xj l,
ESS/xj

CB/xj l,
SVC/xj

OLTC installation decision for ESS/CB/SVC/OLTC
cLoss/cs t,

TR/cW/cP/cENS operation price for power loss/main grid
power/WTG/PVG power curtailment/ENS

CW/CP/CENS/CTR/CLoss cost for WTG/PVG power curtailment/ENS/
main grid power/power loss

Pj s t, ,
W0/Pj s t, ,

P0 forecast power of WTG/PVG

Pj s t, ,
TR /Pj s t, ,

W /Pj s t, ,
P /Pj s t, ,

ENS power of main grid/WTG/PVG/ENS
Pij s t, , /Qij s t, , active/reactive power flow from bus i to bus j
Iij s t, , /Vj s t, , current of branch ij and voltage of bus j
Pj s t, ,

d /Pj s t, ,
c discharge/charge power of ESS

Pj s t, ,
Load/Pj s t, ,

ENS active power of load/ENS
Qj s t, ,

TR /Qj s t, ,
CB /Qj s t, ,

SVC/Qj s t, ,
Load/Qj s t, ,

ENS reactive power of main grid/CB/SVC/
load/ENS

ω coordination factor between the investment cost and op-
eration cost

Ds duration of season s
MCB maximum installation number of CB

−
V

j
/V̄j/Īij lower/upper bound of voltage magnitude/current limit of

branch

−
P

j
TR/P̄j

TR lower/upper bound of main grid active power

−

Q
j

TR/Q̄j
TR lower/upper bound of main grid reactive power

uj s t, ,
d /uj s t, ,

c charge/discharge status of ESS

−
P

j
d/P̄j

d lower/upper bound of discharge power of ESS

−
P

j
c/P̄j

c lower/upper bound of charge power of ESS

Ej s t, ,
ESS capacity for ESS

−
E

j
ESS/Ēj

ESS lower/upper bound of capacity for ESS

αj
c/αj

d charge/discharge efficiency of ESS
λj s t, ,

OLTC tap ratio (secondary to primary) for OLTC
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