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a b s t r a c t

Dimension reduction and visualization are staples of data analytics. Methods such as
Principal Component Analysis (PCA) and Multidimensional Scaling (MDS) provide low
dimensional (LD) projections of high dimensional (HD) data while preserving an HD
relationship between observations. Traditional biplots assign meaning to the LD space of a
PCA projection by displaying LD axes for the attributes. These axes, however, are specific
to the linear projection used in PCA. Stress-based MDS (s-MDS) projections, which allow
for arbitrary stress and dissimilarity functions, require special care when labeling the LD
space. An iterative scheme is developed to plot an LD axis for each attribute based on the
user-specified stress and dissimilarity metrics. The resulting plot, which contains both the
LD projection of observations and attributes, is referred to as the Generalized s-MDS Biplot.
The details of theGeneralized s-MDSBiplotmethodology, its relationshipwith PCA-derived
biplots, and an application to a real dataset are provided.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Dimension reduction and data visualization are staples of any good analysis, whether as an exploratory or disseminating 2

tool. Visualizations provide an opportunity for the analyst to discover underlying structures and gain insights not easily 3

gleaned by examining the raw data itself (Keim, 2002). Early techniques, such as Chernoff’s faces (Chernoff, 1973) and star 4

plots (Chambers, 1983) simultaneously display all attributes for a given observation at once. These techniques, however, 5

lose utility when the data becomes larger and the dimensionality increases. Consequently, many exploratory approaches for 6

modern data involve dimension reduction. We briefly discuss two popular data reduction techniques: Principal Component 7

Analysis (PCA) and Multidimensional Scaling (MDS). 8

PCA and MDS are among the most commonly used methods for reducing dimensionality. PCA provides a new set of 9

orthogonal axes in the directions that maximize the variance of the reduced dimensional, projected data. To produce the 10

low dimensional (LD) projection, the user removes the axes that capture the lowest amounts of variance. MDS is a more 11

general framework for finding an LD projection that most closely (based on some criterion) matches high dimensional (HD) 12

dissimilarities. Stress-basedMDS (s-MDS) provides additional flexibilities by allowing users to select dissimilaritymetrics in 13

both theHDattribute space and the LDprojected space, aswell as the stress functionused to relatedHDand LDdissimilarities. 14

PCA and MDS will be more thoroughly discussed in Sections 3 and 4. It should be mentioned that PCA is a specific case of an 15

MDS algorithm, which we provide details in Section 4.2. 16
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Although s-MDS preserves the average dissimilarity between observations based on the chosen stress function, we lose1

a sense of how the original attributes affect positioning. For example, the PCA axes are principal components representing a2

linear combination of the attributes. To rectify this, researchers have developedways of labeling the LD space. Gabriel (1971)3

developed the original biplot, a PCA-specific technique that adds vectors to the PCA projection to represent a projection4

of the HD axes. It is important to emphasize that the bi in biplot refers to the simultaneous display of information about5

(1) observations and (2) attributes in the same space, rather than referring to the dimensionality of the LD space. Gower6

(1992) expanded upon the PCA Biplot by allowing other distance metrics. Using an approximation based on Euclidean7

distance, axes are linearly projected based on the specified distance function. Referred to as the Nonlinear Biplot, these8

projections often create highly curved LD axes. Cheng andMueller (2016) propose the Data ContextMap, which also displays9

both the observations and attributes as points in the same space. This is achieved by creating a large composite matrix with10

observations and attributes that are treated as observations. As a consequence, the projection of the observations is affected11

by the treatment of the attributes, instead of simply labeling the already created projection.12

Our proposed solution for providing context to the LD space of an s-MDS projection is the Generalized s-MDS Biplot. The13

remainder of themanuscript is organized as followed. First, we review PCA and introduce the original biplot.We then discuss14

s-MDS and Classical MDS, while establishing the connection between them. Next, we detail our method for the Generalized15

s-MDS Biplot, and show its connection with the PCA Biplot. Finally, we apply our Generalized s-MDS Biplot to a real dataset16

and discuss the generated projections.17

2. Notation18

For clarity and ease of reading, we define some notation that will be used throughout the manuscript. We let X =19

(x1, . . . , xn)′ denote an n × p matrix of HD data containing n observations of p continuous attributes. We assume that X20

is full column rank and has unitless columns with column means of 0. Utilizing the singular value decomposition (SVD),21

we can write X = UΛ1/2V ′, where Λ = diag(λ1, . . . , λp) ( λ1 ≥ λ2 ≥ · · · ≥ λp) is a diagonal matrix with the p22

positive eigenvalues of X ′X and XX ′ in descending order, and U = (u1, . . . , up) and V = (v1, . . . , vp) are n × p and23

p× p orthonormal matrices whose columns contain the eigenvectors of XX ′ and X ′X , respectively. We can further partition24

the SVD as X = (U1,U2)diag(Λ1,Λ2)1/2(V1,V2)′ where Λ1 contains the first m eigenvalues and U1 and V1 contain the25

corresponding eigenvectors. We let Z = (z1, . . . , zn)′ be an n × m, m < p matrix of LD coordinates corresponding to X .26

Similarly to X , Z can be decomposed into ŨΛ̃1/2Ṽ ′.27

3. Principal Component Analysis28

We begin with data matrix X , which consists of n observations of p attributes. PCA finds a new orthogonal basis, whose29

elements are linear combinations of the original attributes, that maximizes the total variance in the projected space. To find30

new basis vectors e1, . . . , ep, we sequentially solve the following constrained optimization:31

ArgMax
ej

Var(Xej),

subject to: e′

jej = 1,
e′

jek = 0, j ̸= k.

32

Solving for e1 provides the principal direction that captures the most variance. Given e1, e2 is the principal direction that33

captures the second-most variance while being orthogonal to e1; we continue in this manner until we solve for all p basis34

vectors. The constraints ensure that we do not simply make ej extremely large to achieve themaximization and also that the35

basis vectors are orthogonal. PCA has a simple, closed-form solution: ej = vj, the eigenvector associated with the jth largest36

eigenvalue of X ′X . We can then obtain orthogonal, HD coordinates X̃ via the linear projection XV .37

While the original goal of PCA is to find a new basis for the data, it is convenient to use PCA for dimension reduction as38

well. To reduce the data tom dimensions, we need only to keep the firstm columns of X̃ , which provides the linear projection39

of X along the firstm principal components. The quality of the projection can easily be quantified by the proportion of total40

variance preserved, given by (
∑m

j=1λj)/(
∑p

j=1λj). When the proportion of variance captured is higher, the projection more41

accurately reflects the HD structure. Whenm ∈ {2, 3}, PCA is a common tool for visually exploring underlying structures.42

3.1. Principal Component Analysis Biplot43

Gabriel’s PCA Biplot (Gabriel, 1971) is an extension of the PCA projection that labels the projection space in terms of44

the HD attributes. Consider the SVD of the HD data X = UΛ1/2V ′. X can be further decomposed into bUΛα/2Λ(1−α)/2V ′/b,45

where α ∈ [0, 1] and b is a scalar. Gabriel shows that we can consider bUΛα/2 as information about the observations and46

VΛ(1−α)/2/b as information about the attributes embedded in the raw data.47

As in PCA, for dimension reduction we extract the first m columns of each matrix, U1,Λ1, and V1. The matrix product48

X̃ = U1Λ
1/2
1 V ′

1 is a rank deficient approximation of X . To obtain an LD projection of the observations, we plot the n rows of49

Z = bU1Λ
α/2
1 . Similarly, we plot the p rows ofΛ(1−α)/2

1 V1/b as arrow-vectors (axes) from the origin, indicating the direction50

of the projection in terms of each attribute. Longer arrows represent the important variables driving the projection.51
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