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h i g h l i g h t s

• A sparsity estimation method based on the Restricted Isometry Property (RIP) criterion is proposed for determining the number of selection atoms.
• An adaptive adjustment method for step size is proposed to remove mismatching atoms and accelerate the reconstruction process.
• The proposed RSEMP algorithm can provide a high reconstruction quality and a less computational time under either a random measurement matrix

or a determinacy measurement matrix when the sparsity is pre-estimated.
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a b s t r a c t

Achievement of good reconstruction performance by most of existing greedy algorithms is possible only
when signal sparsity has been known well in advance. However, it is difficult in practice to ensure
signal sparsity making the reconstruction performance of the greedy algorithms stable. Moreover, some
greedy algorithms with previous unknown signal sparsity are time-consuming in the process of adaptive
adjustment of signal sparsity, and thereby making the reconstruction time too long. To address these
concerns, the greedy algorithm from signal sparsity estimation proposed in this paper. Based on the
restricted isometry property criterion, signal sparsity is estimated before atoms selection and the step
size of atoms selection adjusted adaptively based on the relations between of the signal residuals in
each iteration. The research which solves the problem of sparsity estimation in the greedy algorithm
provides the compressed sensing available to the applications where the signal sparsity is un-known.
It has important academic and practical values. Experimental results demonstrate the superiority of the
performance of proposed algorithm to the greedy algorithms with previous unknown signal sparsity, no
matter on the performance stability and reconstruction precision.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Compressed sensing (CS) is an exciting and rapidly developing
research field, arousing wide interests from researchers in the
fields of signal processing, statistics, computer science and even
the entire scientific community. In recent years, many scholars
have carried out many research works on CS theory, which has
been applied to various aspects [1–5]. Obviously, the key to the
popularity of CS theory lies in the ability of the signal to reconstruct
with a high precision after compression and sampling. Especially,
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in the field of wireless real-time transmission, fast and accurate
signal reconstruction algorithm is particularly in urgent demand,
and the research on reconstruction algorithm is essential. So recon-
struction algorithms become the emphasis in CS theory and attract
extensive attentions worldwide [6–9].

CS theory presents the concept that if the signal y ∈ Rm×1 has
at the most K non-zero elements, signal y can be projected by the
measurementmatrixΨ ∈ Rs×m (s ≪ m), and then ameasurement
vector f ∈ Rs×1 whose dimension is much smaller than y is
obtained [10]. That can be expressed as follows:

f = Ψ y (1)
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In fact, the process of signal projection with the measurement
matrix is the process of signal compression. Notably, formula (1)
is the underdetermined equations and has innumerability solu-
tions. But y is K -sparse signal, and when the measurement matrix
satisfies certain conditions, y can be reconstructed accurately by
measurement vector f by solving the minimum value of l0- norm.
The objective function is as follows:

argmin
y

∥y∥0 s.t. f = Ψ y (2)

If the y ∈ Rm×1 is not a sparse signal, a dictionary baseΦ ∈ Rm×n

is needed and y can be sparsely represented as follow:

y = Φx (3)

According to the CS theory, the mathematical model of CS can
be represented as:

f = Ψ y = ΨΦx = Θx (4)

where Ψ ∈ Rs×m is measurement matrix, Θ is sensing matrix and
Θ = ΨΦ . It seems that the signal sampling and compression
can be performed simultaneously and the signal transmission is
no longer following the traditional Nyquist sampling theorem as
a result of the emergence of the sensing matrix. Then, the signal y
can be reconstructed by solving the following objective function.

argmin
x

∥x∥0 s.t. f = Θx (5)

By solving the above l0-norm minimization problem, the ap-
proximate solution

∧

x of objective function is obtained, and then
the signal is reconstructed according to

∧

y = Φ
∧

x.
We can conclude that signal reconstruction process based on

CS is the process of the recovery of them-dimension original signal
y ∈ Rm×1 from the s-dimensionmeasurement signal,where s ≪ m.
If y is sparse, the signal reconstruction problem can be translated
into solving the l0- norm minimization problem in formula (2);
otherwise, if y is not sparse, the signal reconstruction problem can
be translated into solving the l0- norm minimization problem in
formula (5). In other words, no matter whether y is sparse, the
signal reconstruction will be translated into solving the l0- norm
minimization problemafter compressed sensing. However, solving
the minimum value of l0- norm is a NP-hard problem [11], and
accordingly, many scholars have proposed the convex optimiza-
tion algorithms, combination algorithms and greedy algorithms for
solving the suboptimal solution of the objective function (2) or (6)
to replace global optimal solution [12–15].

The convex optimization algorithms can translate the l0-norm
minimization problem to the l1-norm minimization problem, and
translate the nonconvexproblem into a convex problem,which has
been proved by Elad and Bruckstein in 2002 [16], as well as the
Donoho D L [17] and Sharon Y [18]. The existing convex optimiza-
tion algorithms applied to CS include Inner Point algorithm [19],
Projected Gradient Methods algorithm [8] and Iterative Thresh-
olding algorithm [20]. Combination algorithms use group testing
for reconstructing the highly structured samples of the orthogonal
signal. HHS Pursuit [21] and Sub-linear Fourier Transform [22] are
the representative ones in the numerous combination algorithms.
Compared with convex optimization algorithms, the computing
speed of combination algorithms are faster and usually achieve the
advantages of sublinear. Greedy algorithms gradually approximate
sparse coefficient and the original signal by iteratively pursuing the
best matching atomic, and its performance is theoretically close to
the result of l0 norm minimization. The typical greedy algorithms
include Orthogonal Matching Pursuit (OMP) algorithm [7], Regu-
larized Orthogonal Matching Pursuit (ROMP) algorithm [23], Com-
pression Sample Matching Pursuit (CoSaMP) algorithm [24], Sub-
space Pursuit (SP) algorithm [25], Stagewise Orthogonal Match-
ing Pursuit (StOMP) algorithm [26], StagewiseWeak Orthogonal

Matching Pursuit (SWOMP) algorithm [9] and Sparsity Adaptive
Matching Pursuit (SAMP) algorithm [27].

The conclusion from a further study of the above three kinds
of algorithms, is that the reconstruction accuracy of a convex
optimization algorithm is higher and the number ofmeasurements
is less than a greedy algorithm. However, the considerable re-
construction time of a convex optimization algorithm makes it
difficult to apply to the large-scale signal processing applications.
The computational complexity of a combination algorithm is lower
while the number of measurements is much more than a greedy
algorithm, which limits the ability of data compression. A greedy
algorithm has significant advantages on implementation and re-
construction time. However, whose global convergence cannot
be guaranteed. Generally, by adding certain constraint condition,
there is plenty of room for performance improvement on the
reconstruction accuracy and reconstruction time of the greedy al-
gorithm. Consequently, this paper mainly focused on the research
of the greedy algorithm.

The focus of greedy algorithms is on the choice of the suitable
atoms. In other words, how to make rules of atom selection is the
hotspot on the greedy algorithms researches. The existing repre-
sentative greedy algorithms, OMP algorithm, CoSaMP algorithm,
SP algorithm and ROMP algorithm need to know signal sparsity
in advance to ensure a better reconstruction performance. Un-
fortunately, in real applications, it is impossible to determine the
sparsity of every signals to satisfy the condition of high accuracy
reconstruction of greedy algorithms. Hence, some scholars have
proposed some greedy algorithms for matching pursuit the termi-
nation conditions independent from the signal sparsity, including
StOMP algorithm, SWOMP algorithm and SAMP algorithm. StOMP
algorithm uses the current residual for determining the threshold
of atom selection and pursue multiple atoms in every iteration on
the basis of the concept of stagewise orthogonal; however, pursuit
of multiple atoms brings in some constraints on the measurement
matrix. Afterwards, SWOMP algorithm is proposed for changing
the threshold of atom selection and lower the demands on de-
signing the measurement matrix. StOMP algorithm and SWOMP
algorithm focus only on the threshold of atom selection without
considering the signal sparsity for signal reconstruction. Then,
SAMP algorithm is proposed which updates the selection number
of atoms based on the current residual in each iteration, and
searches the best matching set of atoms iteratively to achieve the
adaptive sparsity. However, the process of matching pursuit of
SAMP has no theoretical basis, and then its performance is not
stable. Therefore, this paper proposes a greedy algorithm named
RSEMP algorithm, which takes the Restricted Isometry Property
(RIP) criterion as theoretical basis of signal sparsity estimation,
using the relations between of the residuals to adjust the step size
of the atom selection for pursuing the best matching atoms set to
achieve a more excellent reconstruction performance.

2. Signal sparsity estimationbasedon restricted isometry prop-
erty

Signal reconstruction with a high precision should follow RIP
criterion, which gives the restricted condition between the sensing
matrix and the sparse signal. The restricted condition is described
as below.

A signal x is said to be K -sparse if x has at most K nonzero
coordinates. The sensing matrix Θ is said to satisfy the Restricted
Isometry Property of order K with constant δ ∈ (0, 1), for any K -
sparse vector x (∥x∥0 ≤ K ) [28], we have

(1 − δ) ∥x∥2
2 ≤ ∥Θx∥2

2 ≤ (1 + δ) ∥x∥2
2 (6)

When the original signal is sparse, the dictionary baseΦ in the
sensing matrix Θ = ΨΦ is an identity matrix, and the sensing
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