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a b s t r a c t

A new memristive system is proposed in this paper which can have no equilibrium and a line of equilib-
rium based on the value of its controlling parameter. Also, changing that parameter can cause the system
having both chaotic and hyperchaotic solutions. This system has a multi-wing strange attractor.
Dynamical properties of this system such as Lyapunov exponents and bifurcation diagram are calculated.
This system belongs to the category of systems with hidden and multistable attractors. A system with all
the above-mentioned properties is not common in the literature. Finally, an adaptive sliding mode con-
trol method is applied to synchronize this chaotic system.

� 2018 Elsevier GmbH. All rights reserved.

1. Introduction

Memristor (concatenation of MEMory ResISTOR), is the fourth
fundamental circuit element, described by a nonlinear voltage-
current relation [1]. Memristive circuits and systems have brought
great achievements in simulating processes which needs memory
such as biological systems [2] (e.g. learning and associative mem-
ory) and designing logical gates. Memristive systems show more
complex dynamical behaviors, like chaos, hyperchaos and hidden
attractors [3,4], than other common nonlinear systems. Because
of applications of these complex behaviors, for example in the
image processing [5,6,7], control engineering [8,9,10], electronic
engineering [11,12,13] and neural networks [8], designing memris-
tive systems with particular dynamical features attract excessive
interest nowadays [14].

Multi-stability is a very important phenomenon which can be
observed in some dynamical systems [15,16]. The maximum possi-
ble multi-stability is extreme multi-stability which has been
observed in chaotic and memristive systems [17,18,19,20,21,22].

Hyperchaotic systems have more complex solutions than chao-
tic systems. They have more than one positive Lyapunov exponent

(LE) i.e. for a four-dimension hyperchaotic system there are two
positive LEs, one zero, and one negative LE [23,24,25]. Especial
memristive systems and circuits with no equilibrium
[26,27,28,29], a line of equilibria [30], different number of wings
[11,31,32,33], hidden attractors [34,35,36,37], multistability
[38,39,40,41], and extreme multistability [19] have been reported
in literature.

Synchronization of chaotic systems has applications in secure
communication and cryptography [42,43]. The highly sensitive
nature of chaotic systems to initial conditions makes it difficult
to synchronize the systems with uncertainties and disturbance.
Some well-known ways to synchronize chaotic systems are using
active control method [44], sliding mode control [45], Adaptive
sliding mode [46,47], etc.

The rest of this paper is organized as follows. In Section 2, the
proposed system is introduced. In Section 3, the dynamical proper-
ties of the system which includes Lyapunov exponents diagram
(Section 3.1, bifurcation diagram (Section 3.2, and multistability
analysis (Section 3.3 is presented. Synchronization of this system
is divided into the problem statement (Section 4.1 and HMS syn-
chronization (Section 4.2 sections. Also, an electronic circuit of
the proposed system is presented in Section 5. Finally, concluding
remarks are discussed in Section 6.
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2. Hyperchaotic memristive system (HMS)

A memristive system with a line equilibrium was proposed in
[30] which surprisingly can show a four-wing hyperchaotic attrac-
tor. A 3D system is considered and introduced with memristor in
the second state and the flux that passes through the memristor
became a new state variable denoted as w. Also state y is the state
voltage v going into the memristor, and let k be a positive param-
eter indicating the strength of the memristor. In this paper, we pro-
pose a modified version of the system proposed in [30] by
considering a control parameter. This modified system shows both
the line equilibrium and no equilibrium conditions for different
values of the control parameter. The hyperchaotic memristive sys-
tem with the new control parameter is defined as,

_x ¼ axþ byz
_y ¼ cyþ dxz� kyWðwÞ � TSC
_z ¼ ezþ fxyþ gxw
_w ¼ �y

ð1Þ

where W wð Þ is called the memductance and given by
W wð Þ ¼ mþ 3nw2. In Fig. 1, the parameters of the HMS are set
toa ¼ 0:35, b ¼ �10, c ¼ �0:6, d ¼ 0:3, e ¼ �1:6, f ¼ 2, g ¼ 0:1,
m ¼ 0:1, n ¼ 0:01, k ¼ 0:2, TSC ¼ 0:01 and initial conditions are con-
sidered as ½0:1;0:1;0:1;0:1�.

The HMS exhibits hyperchaotic attractors without equilibrium
points when the control parameter TSC – 0. When TSC ¼ 0, the
system has a line equilibrium in ð0;0;0;wÞ. In [30], it has been
shown that this line equilibrium is consisting of infinite unstable
saddle points.

3. Dynamical analysis of the HMS

3.1. Lyapunov exponents

We will discuss the dynamics of the HMS for TSC–0 when the
HMS has no defined equilibrium and hence shows hidden oscilla-
tions. The finite time Lyapunov exponents are calculated using
the Wolfs algorithm [48] as L1 ¼ 0:1032, L2 ¼ 0:0149, L3 ¼ 0, and
L4 ¼ �1:996. Two positive Lyapunov exponents confirm that the
HMS shows hyperchaotic behavior when a ¼ 0:35, b ¼ �10,
c ¼ �0:6, d ¼ 0:3, e ¼ �1:6, f ¼ 2, m ¼ 0:1, n ¼ 0:01, k ¼ 0:2 and

initial conditions are ½0:1;0:1;0:1;0:1�. It should be noted that there
are some important issues about calculating Lyapunov exponents
described in [49,50,51,52]. Also note that LEs, computed on a tran-
sient chaotic set, may be positive for a very long time, while,
finally, the trajectory may converge to stationary point and limit
value of LE will be negative. In our calculations, the Lyapunov
exponents have been calculated for a duration of 50,000 sec, which
seems to be long enough.

3.2. Bifurcation diagram

To investigate the dynamical behavior of the HMS with param-
eters, we discuss the bifurcation of the system as the parameter
increases. In this case our parameter of interest is TSC which con-
trols the system’s equilibrium points. The range of the parameter
for the bifurcation is taken as ½�0:06;0:06� and the local maxima
of the state variable x is plotted as shown in Fig. 2a. The HMS takes
a period doubling route to chaos and shows chaotic oscillations for
�0:0508 < TSC < 0:0504. To show the type of attractor, we inves-
tigate the Lyapunov exponents’ spectrum in Fig. 2b. It can be seen
that the HMS shows two positive LEs in the range
�0:0515 < TSC < 0:05and thus exhibits a hyperchaotic attractor.

3.3. Multistability analysis

To study the multistability of the HMS, we use the forward
(increasing the parameter from minimum to maximum with reini-
tializing the initial conditions to the end values of state trajectories
and plotting the local maxima of the state variables) and backward
(decreasing the parameter in discussion from maximum to mini-
mum with reinitializing the initial conditions to the end values
of state trajectories and plotting the local maxima of the state vari-
ables) bifurcation. Fig. 3a shows the forward (blue dots) and back-
ward (red dots) bifurcation of the HMS while parameter TSC varied
between ½�0:06;0:06� and the other parameters are set to a ¼ 0:35,
b ¼ �10, c ¼ �0:6, d ¼ 0:3, e ¼ �1:6, f ¼ 2, m ¼ 0:1, n ¼ 0:01,
k ¼ 0:2 and x 0ð Þ; y 0ð Þ; z 0ð Þ;wð0Þð Þ ¼ ½0:1;0:1;0:1;0:1�. We could
see a small window �0:05055 < TSC < 0:0513 where coexisting
attractor with a limit cycle is seen and coexisting attractors are
seen for TSC ¼ 0:0505 as shown in Fig. 4a. Similarly coexisting
period-8 oscillations are seen for TSC ¼ �0:0508 as shown in
Fig. 4b.

Fig. 1. 2D phase portraits of the HMS shown in the (a) X–Y plane and (b) Y–Z plane whena ¼ 0:35, b ¼ �10, c ¼ �0:6, d ¼ 0:3, e ¼ �1:6, f ¼ 2, g ¼ 0:1, m ¼ 0:1, n ¼ 0:01,
k ¼ 0:2, TSC ¼ 0:01 and ½x 0ð Þ; y 0ð Þ; z 0ð Þ;wð0Þ� ¼ ½0:1;0:1;0:1;0:1�.
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