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a b s t r a c t

In this paper, a novel reformulated Auxiliary Functions of Generalized Scattering Matrix (AFGSM) method
is presented for analyzing stopband characteristics of asymmetrically loaded helix Slow-Wave Structures
(SWSs). In this method, the stopband problem of asymmetrically loaded helix SWS is reduced to the
determination of zero transitions of J�1 and R�1 auxiliary functions in the vicinity of p-point frequency.
Besides, Generalized Scattering Matrix (GSM) representations of a single turn of helix SWS are clearly
expressed for different asymmetries which can occur with different ways due to angular offset of the
rods, variations of support rod permittivity values and widths, angular offset of metal segments, varia-
tions in gap between helix to segment and segment width. In order to show the accuracy of the method,
the proposed AFGSMmethod is verified with open literature. The applicability of the proposed method to
analyze asymmetrically loaded helix SWS is quite simple and the method accurately determines Relative
Stopband Bandwidths (RSBs) under different asymmetries.

� 2018 Elsevier GmbH. All rights reserved.

1. Introduction

Helix Traveling Wave Tubes (TWTs) are used as microwave
power amplifiers for communication and electronic countermea-
sure (ECM) systems when extremely broad bandwidth is required
[1]. Main components of a Helix TWT are electron gun, helix slow
wave structure (SWS), RF input/output couplers and collector.
Helix SWSs dominantly affect RF performance of TWTs due to their
important dispersion characteristics and therefore their analysis
has been investigated in open literature with several methods in
[1–8]. Fundamental elements of helix SWSs are typically sheath/-
tape helix, metal envelope and dielectric support rods as depicted
in Fig. 1. The helix is generally made of tungsten tape which is a
relatively delicate structure and should also be supported strictly.
On the other hand, thin dielectric support rods are used to avoid
loading effects. The most commonly used dielectric materials are
BeO and APBN to support helix SWSs. Three equally spaced dielec-
tric support rods and helix are placed into the metal envelope.
Additionally, helix SWSs can be loaded with metal segments in
order to obtain better dispersion characteristics for broadband

TWTs. These segments must also have perfect symmetric place-
ments in the helix SWSs.

All these placements must be completed perfectly without
asymmetry. Otherwise, asymmetry of any displacements of helix
SWS elements give rise to stopband in the vicinity of p-phase point
where fundamental forward and backward waves intersect. Fur-
thermore, these asymmetries cause band edge oscillation and
power holes which negatively affect the power performance of
the TWT. Thus, the occurrence of this stopband due to asymmetri-
cally loaded helix SWS is a critical issue for the design of broad-
band TWTs.

Effects of the asymmetry on the performance of the TWT are
evaluated by stopband characteristics of helix SWS. To analyze
stopband characteristics, several analytical methods based on Cou-
pled Mode Theory (CMT) have been reported in [9–13]. Hinson and
Lien in [9,10] analyze the helix SWS supported by dielectric rods in
a metal envelope and assume the circuit as dispersionless and loss-
less which is limited both narrowband applications and low fre-
quencies. Onodera’s approach in [11] also considers a lossless
circuit with metal segment loading. Datta et al. in [12] analyze
the same structure by multireflection coupled mode analysis with-
out metal segments. Recently, published paper by Datta et al. [13],
which is based on multireflection coupled-mode analysis, brings
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the stopband analysis phenomena of helix SWS to an important
point and strongly contributes to stopband analysis of helix SWS
asymmetries including not only angular variation of dielectric sup-
port rods but also variations of dielectric constant of support rods,
dielectric support rod width, angular position of metal segment,
helix to segment gap and segment width.

Analysis of asymmetrically loaded helix SWSs is heavily based
on CMT in the available literature. Therefore, CMT can be named
as a conventional method in order to analyze asymmetrically
loaded helix SWSs. Coupled Mode Theory used for analysis of for-
ward and backward space-harmonics waves in the vicinity of p-
point frequency of the helix SWSs needs uncoupled propagation
constants of the forward and backward space harmonics in order
to calculate coupled degenerate mode propagation constants
[14–16]. In addition to this, total reflection coefficient has to be
computed by using the multireflection approach to find coupling
coefficient of coupled mode dispersion relation. In order to obtain
coupled mode dispersion diagram, ladder circuit representation of
helix SWS is used. It is important to say that equivalent circuit rep-
resentation of one period of the helical SWS has to be bp ¼ p phase
difference at the p-point frequency. Computation of total reflection
coefficient of the helical SWS is required for CMT analysis at the p-
point frequency.

A comprehensive Auxiliary Functions of Generalized Scattering
Matrix (AFGSM) method presented in [17] is valid for periodic
structures not only symmetric but also asymmetric unit cell con-
figurations of periodic structures. AFGSM method has been pro-
posed in [17] to determine the bandgaps of periodic structures
(PSs) such as periodically dielectric loaded waveguides, photonic
crystals and helix SWSs with their asymmetric unit cell configura-
tions. The proposed method in [17] is based on the computation of
the two auxiliary functions (J�1) which are related with stored
complex power in the unit cell (UC) and deducing the stopband
of the periodic structures.

In this paper, we have reformulated AFGSM method in [17] in a
different manner and developed quite simple and elegant auxiliary
functions with respect to the functions given in [17]. This reformu-
lation can be simply obtained with the aid of eigenvalue equation
in terms of generalized scattering matrix of the unit cell of the peri-
odic structure. Band edge conditions are forced on the eigenvalue
equation. Novel functions developed in this study can be straight-
forwardly used to determine bandgaps of periodic structures. In
the presented paper, we have investigated stopband characteristics
of asymmetrically loaded helix SWSs of TWTs. The proposed refor-
mulated AFGSM method uses the same ladder circuit representa-
tion of the helix SWS at the p-point frequency with Coupled

Mode Theory. Besides, the presented method just only requires
generalized scattering matrix of the unit cell of helix SWS. There-
fore, GSM computation is sufficient to determine stopband charac-
teristics of asymmetrically loaded helix SWS with AFGSM method
differently from Coupled Mode Theory. Asymmetric cases of sup-
port rods of helix SWS for different scenarios and their effects on
Relative Stop Bandwidth (RSB) are analyzed with the aid of AFGSM
method. To the best of our knowledge, no attempt has been made
with a similar approach to determine stopband characteristics of
asymmetrically loaded helix SWSs. To this end, the proposed
AFGSM method in this paper introduces a new perspective to ana-
lyze and design of helix SWS in contrast to conventional Coupled
Mode Theory.

2. AFGSM theory for helix SWSs

A comprehensive AFGSM method is presented to the available
literature to determine stopband characteristics of periodic struc-
tures. The method given in [17] is based on the analysis of stored
complex power in the unit cell of the periodic structure. When it
is assumed that one Floquet mode propagates along the unit cell
and invoking band edge conditions, auxiliary functions (J�1) are
derived in [17] in terms of generalized scattering parameters
(S11; S21; S22) as given below for lossless and reciprocal periodic
structure.

J1 ¼ 2ImfS11 þ 2S21RefK1g þ S22jK1j2g ¼ 0 ð1Þ

J�1 ¼ 2ImfS11 þ 2S21RefK�1g þ S22jK�1j2g ¼ 0 ð2Þ
where

K1 ¼ 1� S21
S22

; K�1 ¼ �1� S21
S22

ð3Þ

Proposed functions of J1 and J�1 derived in [17] can be directly
used for the bandgap analysis of periodic structures.

In this study, instead of focusing on complex power in the unit
cell, we deal with eigenvalue equation of periodic structures with a
different point of view. Eigenvalue equation of a nonsymmetrical
unit cell of a PS can be written in terms of generalized scattering
parameters of UC, given in [18] as below,

cosh ¼ 1� S11S22 þ S221
2S21

ð4Þ

For single Floquet mode propagation in unit cell, eigenvalue is
defined as

k1;2 ¼ e�jh; h ¼ bp 2 ð0;pÞ ð5Þ
where b and p are Floquet phase factor and period of the UC. Stop-
bands of the unit cell occur at h ¼ 0 and h ¼ p which correspond to
the k ¼ þ1 and k ¼ �1, respectively. When we substitute h ¼ 0 and
h ¼ p values in Eq. (4) we obtain

S11S22 � ð1� S21Þ2 ¼ 0; for h ¼ 0; k ¼ 1 ð6Þ

S11S22 � ð1þ S21Þ2 ¼ 0; for h ¼ p; k ¼ �1 ð7Þ
In order to obtain proper functions as given in (1) and (2), we

can take the imaginary and real part of Eqs. (6) and (7). Hence,
imaginary and real part of (6) and (7) must be zero at the band
edge frequencies for k ¼ þ1 and k ¼ �1, respectively. Therefore,
J1;R1; J�1 and R�1 auxiliary functions which correspond to the
k ¼ þ1 and k ¼ �1 band edge conditions can defined as

J�1 ¼ ImfS11S22 � ð1� S21Þ2g ¼ 0 ð8Þ

R�1 ¼ RefS11S22 � ð1� S21Þ2g ¼ 0 ð9Þ
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Fig. 1. Cross-section view of a typical helix slow wave structure of TWT.
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