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of malware. Mainstream malware feature extraction can be
divided into two categories, static and dynamic. In static
analysis, malicious software is analyzed without executing
it (Gandotra et al.,, 2014). The detection patterns used in
static analysis include string signature, byte-sequence n-
grams, syntactic library call, control flow graph and opcode
(operational code) frequency distribution. For static anal-
ysis, the executable has to be unpacked and decrypted in
advance.However, in dynamic analysis, malicious software
is analyzed while being executed in a controlled environ-
ment (e.g., virtual machine, simulator, emulator, or sandbox).
Before executing the malware samples, appropriate moni-
toring tools like Process Monitor or Capture BAT are installed
and activated. While static analysis is usually vulnerable to
code obfuscation, dynamic analysis is time consuming and
computationally intensive.

The main contributions of this paper are: (1) Proposing a
novel MCSC algorithm which combines opcode sequence and
LSH to extract malware features. During feature extraction,

1. Introduction

Malware is one of today’s major Internet security threats. An
Internet security threat report from Symantec (2016) shows
that more than 430 million unique pieces of malware were
discovered in 2015, an increase of 36% from the year before.
The amount of new malware has been continuously growing,
and its threats are increasing rapidly.

Malware, which is slipped into a victim’s computer by
hackers (attackers) through security vulnerabilities of the op-
erating system or application software, can influence normal
operation, collect sensitive information and steal superuser
privileges in order to perform malicious actions. Generally,
mainstream malware includes malicious scripts, vulnerability
exploits, back doors, worms, trojans, spywares, rootkits, etc.,
and combinations or variations of the above types as well.

Traditionally, most malware detection systems are based
on feature vectors, which contain essential characteristics
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major block selection is used to extract the main part of mal-
ware. The preprocessing can reduce the influence from obfus-
cation in other parts and reduce calculation in following steps.
(2) Using visualization techniques to transform the malware’s
non-intuitive features into fingerprint images. Compared to
the original opcode sequence, a Simhash of the same size can
easily be converted into an image. (3) Using a CNN to train the
malware fingerprint images and get excellent identification
results. (4) Improving MCSC further using multi-hash, major
block selection and bilinear interpolation.

This paper is organized as follows. Malware-related studies
are reviewed in Section 2. In Section 3, the MCSC algorithm
is proposed and discussed in more detail. The experimental
results are presented in Section 4, and Section 5 summarizes
the whole paper.

2. Related work

Malware detection methods are typically divided into two cat-
egories: static analysis and dynamic analysis. In static anal-
ysis, the malware binary file is disassembled or decompiled
without executing it. Thus, static analysis reveals the mal-
ware’s behavior while preventing the operating system from
malicious damages. However, in most cases static analysis is
not a trivial task since attackers use code obfuscation tech-
niques such as binary packers, encryption or self-modifying
techniques to evade static analysis. Furthermore, static anal-
ysis does not allow a high degree of automation during analy-
sis. In dynamic analysis, the behavior of malware is analyzed
during execution in a debugger. Currently, sandbox-based dy-
namic analysis is one of the most promising techniques. A
sandbox executes a malware sample in a controlled environ-
ment that can monitor and record information of system calls
and behaviors dynamically. The main limitations of dynamic
analysis, especially sandbox-based solutions, are the exten-
sive and detailed reports requiring human analysis and inter-
pretation. Furthermore, in contrast to static analysis, dynamic
analysis can be automated to a high degree, and it also has
high computation complexity.

2.1.  Static analysis

In static analysis, Schultz et al. (2000) were the first to intro-
duce the concept of data mining for detecting malware. They
used three different static features for malware classification:
Portable Executable (PE), strings and byte sequences. A rule in-
duction algorithm called Ripper (Cohen, 1995) was applied to
find patterns in the DLL. A Naive Bayes algorithm was used
to find patterns in the string data, and n-grams of byte se-
quences were used as input data for the Multinomial Naive
Bayes algorithm. Tian et al. (2008) used function length fre-
quency to classify Trojans. Zolkipli and Jantan (2011) used
variable length instruction sequences along with machine
learning for worm detection. They tested their method on
a dataset with 1444 worms and 1330 benign files. Kong and
Yan (2013) presented a framework for automated malware
classification based on structural information (function call
graph) of malware. They used an ensemble of classifiers that
learn from pairwise malware distances to classify malware

into their respective families. Santos et al. (2013a) proposed
a method for representing malware that relied on opcode se-
quences in order to construct a vector representation of the
executables. Shankarapani et al. (2011) proposed two general
malware detection methods: Static Analyzer for Vicious Ex-
ecutables (SAVE) and Malware Examiner using Disassembled
Code (MEDIC). Their experimental results indicate that both of
their proposed techniques can provide better detection perfor-
mance against obfuscated malware. Gu et al. (2015) proposed
a malicious document detection method based on wavelet
transform and designed a malicious detection system based
on this method. Li and Li (2015) proposed a 3-layer descrip-
tion of API-calls and similarity comparison method based on
static code structure to determine what code family a mali-
cious Android APK belongs to. This method can be used for
evaluation and classification of unknown APKs.

2.2.  Dynamic analysis

Dynamic analysis generally includes tainting, behavior-based
methods, and API call monitoring (Han et al., 2014). Bayer
et al. (2009) proposed a system that clusters large sets of mali-
cious binaries based on their behavior effectively and auto-
matically. Zolkipli and Jantan (2011) presented an approach
for malware behavior analysis. They used HoneyClients and
Amun as security tools to collect malware. Behavior of these
malware were then identified by executing each sample on
2 virtual platforms, CWSandbox (Anderson et al., 2011) and
Anubis. Anderson et al. (2011) presented a malware detec-
tion algorithm based on the analysis of graphs constructed
from dynamically collected instruction traces. Imran et al.
(2015) proposed a malware classification scheme based on
Hidden Markov Models using system calls as observed sym-
bols. Fujino et al. (2015) proposed “API call topics”, a kind of API
call behavior for a malware family, to identify similar malware
samples. They applied an unsupervised non-negative matrix
factorization (NMF) clustering analysis to extract API call top-
ics from a large corpus of API calls, which can detect similar
malware samples. Lim et al. (2015) proposed a malware clas-
sification method based on network flow activity. They used
clustering of flow features and a sequence alignment algo-
rithm (generally used in bio-informatics to compare two or
more character sequences to obtain their similarities) to an-
alyze the malware traffic flow behavior. The main limitations
of dynamic analysis, especially the sandbox-based solutions,
are that some malware can detect and change behavior when
running in virtual environments. Therefore, dynamic analysis
might not always uncover malicious behavior. Additionally, it
is difficult to ensure execution path coverage using dynamic
analysis.

2.3.  Visualization analysis

Recently, several visualization techniques have been pro-
posed for malware analysis. Yoo (2004) used Self-Organizing
Map to visualize and detect viruses. Quist and Liebrock
(2009) presented a VERA framework to visually represent the
overall flow of a program, which depends on Ether hyper-
visor to covertly monitor the program execution based on
dynamic analysis. Trinius et al. (2009) visualized the behavior
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