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A B S T R A C T

We present a general method to determine the parameters of nonlinear pulse shaping systems based on pulse
propagation in a normally dispersive fiber that are required to achieve the generation of pulses with various
specified temporal properties. The nonlinear shaping process is reduced to a numerical optimization problem
over a three-dimensional space, where the intersections of different surfaces provide the means to quickly
identify the sets of parameters of interest. We also show that the implementation of a machine-learning strategy
can efficiently address the multi-parameter optimization problem being studied.

1. Introduction

In recent years, there has been a growing interest from the photo-
nics community in the generation of non-conventional optical wave-
forms at repetition rates of several GHz because of their applications in
all-optical signal processing and microwave signal manipulation. While
sinusoidal, Gaussian and hyperbolic secant intensity profiles are now
routinely produced by modulators or mode-locked lasers, other signal
waveforms such as parabolic, triangular or flat-top pulse shapes remain
rather hard to synthesize. Advances in fiber lasers have indicated pro-
mising ways to produce such waveforms [1–3], but the tunability of
these lasers in terms of pulse repetition rate remains quite low and their
experimental implementation and stability may require further work.
Different approaches to the generation of specialized waveforms have
also been explored. A first class of methods is based on photonic gen-
eration using special Mach-Zehnder modulator architectures [4,5],
microwave photonic filters [6] or frequency-to-time conversion [7,8].
These methods can produce relatively (a few tens of picoseconds) long
pulses. Another class of approaches aims at the synthesis of the target
waveform directly in the frequency domain by adjustment of the am-
plitude and phase of different coherent spectral lines [9–11]. However,
if the spectral lines involved are limited in number, the achievable duty
cycle of the resulting pulse train will also be restricted. This limitation
can be overcome by the use of ultra-short input pulses from a mode-
locked laser. Pulse shaping using the Fourier-domain approach can
indeed transform an ultra-short pulse into the desired shape, the

transfer function in the frequency domain being the ratio of the target
field distribution to the input field. In this context, picosecond and
femtosecond pulse shaping has been achieved by use of spatial light
modulators [12,13], super-structured fiber Bragg gratings [14],
acousto-optics devices [15], and arrayed waveguide gratings [16].
Though being powerful and flexible, as the numerous successes of the
fore-mentioned methods have demonstrated, the linear pulse shaping
strategy has the intrinsic drawback that the bandwidth of the output
spectrum is determined by the bandwidth of the input spectrum. In-
deed, a linear manipulation cannot increase the pulse bandwidth, and
so to create shorter pulses nonlinear effects must be used. In addition, a
linear pulse shaper can only subtract power from the frequency com-
ponents of the signal while manipulating its intensity, thereby poten-
tially making the whole process power inefficient. The combination of
third-order nonlinear processes and chromatic dispersion in optical fi-
bers can provide efficient new solutions to overcome the drawbacks of
linear pulse shapers [17]. In particular, it has been demonstrated that it
is possible to take advantage of the progressive nonlinear reshaping of
conventional laser pulses that occurs upon propagation in a normally
dispersive fiber to generate various advanced temporal waveforms,
including parabolic [18–21] and triangular [22–26] profiles.

However, the determination of the optimal parameters of a non-
linear fiber system to achieve desired pulse characteristics is more
complex than that involved in linear spectral shaping, where only the
input and target waveforms are required. Indeed, the nonlinear shaping
depends on both the input pulse condition and the fiber properties. In
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previous works, we have proposed and validated some rules for the
design of nonlinear pulse shaping fiber schemes [18,22,26], but
without imposing any requirement on the output pulse characteristic
parameters such as the pulse duration, for example. To the best of our
knowledge, no general method for the design of fiber-based nonlinear
pulse shaping has been developed to date, enabling the identification of
the optimal working parameters for the generation of pulses with var-
ious prescribed characteristics. In this paper, we present such approach,
which provides a comprehensive exploration of the possibilities offered
by fiber-based nonlinear pulse shaping and the determination of the
operational conditions within the space of system parameters for the
formation of pulses with different, simultaneously optimized temporal
features. After describing the degrees of freedom available in the system
and the numerical procedure used for the characterization and opti-
mization of the nonlinear shaping process, we illustrate our proposed
approach through the examples of the generation of parabolic, trian-
gular and rectangular waveforms with different pulse durations and
time-bandwidth products. We also show that the multi-parameter op-
timization problem being considered can be efficiently addressed by
using the machine-learning method of neural networks.

2. Principle and situation under investigation

In this section, we set up the problem to solve and outline the nu-
merical procedure that we implement to deal with this problem.

2.1. Principle of nonlinear pulse shaping and available degrees of freedom

Nonlinear shaping in a normally dispersive fiber involves many
degrees of freedom. A scheme for nonlinear shaping typically comprises
two stages: a pre-chirping stage followed by a nonlinear propagation
stage. Within such scheme, an initial pulse ψ0(t) with a peak power P0
and a full-width at half maximum (fwhm) duration Tin is first propa-
gated through a dispersive medium, such as a pair of diffraction grat-
ings, a prism pair [27], a segment of hollow core or standard fiber with
very low nonlinearity [23,24]. This linear propagation imprints a
parabolic spectral phase onto the pulse, which is characterized by a
chirp coefficient C0 that can be positive or negative depending on the
group-velocity dispersion (GVD) of the medium being normal or
anomalous. The so obtained chirped pulse is then propagated through a
normally dispersive fiber that reshapes both its temporal and spectral
intensity profiles. According to the initial conditions of the input pulse,
the initial stage of nonlinear dynamics in the fiber, where Kerr-induced
self-phase modulation (SPM) dominates over GVD, may be very dif-
ferent. Indeed, input pulses with a negative chirp coefficient will ex-
perience spectral compression as a result of SPM [15,28–30], whereas
for initially positively chirped (or Fourier transform-limited) pulses,
spectral broadening will drive the nonlinear dynamics and eventually
lead to optical wave-breaking [31]. Moreover, propagation in the
nonlinear fiber is impacted by both GVD and SPM effects, which are
characterized by the respective coefficients β2 and γ. The length of the
fiber L is also a crucial parameter that must be carefully selected.
Therefore, from an experimental standpoint and for a given initial pulse
waveform, at least six parameters can be adjusted to obtain the com-
bination that is fit for purpose.

Note that in this paper we consider the simplest model of fiber
propagation only including the dominant physical effects of the system.
Indeed, higher-order linear effects such as third- or fourth-order dis-
persion, and nonlinear effects such as self-steepening or intra-pulse
Raman scattering have negligible impact on pulses with picosecond-
range durations as the ones being considered here. Note also that our
discussion does not embrace the additional pulse shaping possibilities
offered by advanced fiber designs such as fibers with distributed gain or
longitudinally varying parameters [32–36]. Furthermore, we would
like to emphasize that the focus of the present study is on pulse shaping
in fibers with normal GVD. Anomalously dispersive fibers may sustain

very different pulse dynamics, characterized by the emergence of soli-
tonic structures that can be trickier to handle [37]. To summarize, even
in the simplest configuration being studied, there are six physical
parameters that must be used as input data for the nonlinear shaping
problem, namely, (C0, T0, P0, β2, γ, L), where T0 is a characteristic
temporal value of the input pulse.

2.2. Features of the target pulses

The independent variation of the six system’s parameters discussed
above provides access to a large variety of output pulse temporal fea-
tures. In addition to markedly different pulse shapes (i.e., parabolic,
triangular and rectangular waveforms) whose generation has been
studied in previous works [18,22,27], one can also achieve a very broad
range of output pulse durations, bearing different levels of chirp. It is
worth noting that contrary to what typically occurs upon nonlinear
propagation in a fiber with anomalous GVD, using a normally dis-
persive fiber as the nonlinear shaping element favors the formation of
pulses that are longer than the input pulses.

Different approaches are possible to characterize the pulse shape
[18,22,38]. Here we compute the parameter of misfit M between the
pulse temporal intensity profile IN and the target shape fit IT:

∫ ∫= −M I I dt I dt( ) .N T N
2 2 2

(1)

We also consider the excess kurtosis (defined as μ4/σ4− 3, where μ4
and σ are the fourth central moment and standard deviation of the pulse
intensity profile, respectively, and 3 is the kurtosis of a Gaussian pro-
file) as a measure of shape [38]. Shapes with a positive excess kurtosis
have long and fat tails relative to a Gaussian shape, whereas negative
excess kurtosis equals shorter and thinner tails than the Gaussian pro-
file. We use the fwhm pulse duration Tout as a measure of the temporal
extent of the pulse. The level of chirp present in the pulse is quantified
by computing the Strehl ratio S, defined as the ratio of the maximum
spectral brilliance of the actual pulse to the spectral brilliance obtained
assuming a flat temporal phase of the pulse. Therefore, S is comprised
between 0 and 1, with 1 defining a Fourier transform-limited wave-
form. The bandwidth at fwhm Fout of the frequency spectrum of the
pulse is also used as a descriptor of the chirp.

2.3. Pulse propagation model

Pulse propagation in the fiber system follows the standard nonlinear
Schrödinger equation (NLSE) [37]:
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where ψ(z,t) is the complex envelope of the pulse, z is the propagation
coordinate and t is the retarded time. Note that the effects of linear loss
can be neglected given the very low loss of silica fibers in the tele-
communication wavelength window. As mentioned earlier, here we
also neglect higher-order linear and nonlinear effects as the leading-
order behavior is well approximated by Eq. (2).

The linear dispersive element can be described by Eq. (2) with
γ=0. As a result of GVD, the initial pulse acquires a parabolic phase in
the spectral domain:
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where ∼ψ denotes the Fourier transform of the pulse envelope, and the
chirp coefficient C0 equals the cumulative GVD. This spectral phase
leads to temporal broadening of the pulse and the development of a
chirp in the time domain, which is linear when C0 is high (i.e., over far-
field evolution). This stretched pulse then evolves in the nonlinear fiber
according to Eq. (2).

It is useful to normalize Eq. (2) by introducing the dimensionless
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