

Contents lists available at ScienceDirect

Optical Fiber Technology

journal homepage: www.elsevier.com/locate/yofte

Research on photonic generation of quadrupling triangular-shaped waveform using external modulation

Jin Yuan^{a,b}, Tigang Ning^a, Jing Li^a, Li Pei^{a,*}, Jingjing Zheng^a, Yueqin Li^a

^a Key Lab of All Optical Network and Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China ^b Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor 48105, USA

ARTICLE INFO

OCIS: Microwave photonics Triangular-shaped waveform Modulation SMF

ABSTRACT

We propose an improved approach to generate frequency-quadrupled triangular-shaped waveform signals based on two cascaded modulators. A dual-parallel Mach-Zehnder modulator (DP-MZM) is employed to provide the quadrupling RF modulation, after which two primary optical sidebands (\pm 2nd) are generated in spectrum. Then a dual-drive Mach-Zehnder modulator (DD-MZM) is followed to perform the optical double sideband (ODSB) modulation and signal with four sidebands (\pm 2nd and \pm 6th) is obtained. By adjusting modulation index carefully, the power ratio of \pm 2nd and \pm 6th sidebands can be tuned to 9.5 dB. A piece of single mode fiber (SMF) is applied to remove the undesired harmonic. The expression of optical intensity is approximately equal to the Fourier expansion of ideal triangular-shaped waveform. The principle is illustrated by theory, simulation, and experiment. Finally, triangular-shaped waveform signals with repetition rate of 8 GHz, 12 GHz, 16 GHz and 20 GHz are generated.

Photonic arbitrary waveform generation has attracted much attention due to its important applications in all-optical data processing, communication system and radar system [1-4]. Triangular-shaped waveform, which is featured with linear raising-up and falling-down edges, has been widely used in all-optical signal processing and manipulation [5]. Typically, triangular-shaped waveforms can be generated through optical-spectrum-shaping method together with the frequency-to-time mapping (FTTM) technique [6]. In this method, the spectral envelope of an optical frequency comb is reformed by the spectral shaper to be a triangular-shaped version. Then the spectral envelope is mapped to temporal waveform in the photodetector after FTTM in a dispersion element. The drawback of this method is the usage of a mode-locked laser (MLL) which will lead to high cost and the generated triangular-shaped waveform signal usually have small duty cycle less than 1. In addition, triangular-shaped waveforms can be generated based on optoelectronic oscillator (OEO), which needs no external microwave source [7,8]. Nevertheless, the duty cycle of the triangular-shaped pulses generated by conventional OEO scheme is low and the repetition rate is difficult to tune. To solve these defects, waveform generation based on external modulation has been proposed [9-13]. In the external modulation system, a sinusoidal RF signal is firstly applied to a modulator to generate a series of sidebands. By controlling the phases and amplitudes of sidebands approximately equal to the Fourier expansion components of a triangular waveform, desired waveforms with full-duty-cycle are obtained. For example, in Ref. [9], we proposed a triangular-shaped waveform generation based on spectrum manipulation. To obtain triangular-shaped waveform signals, a single-drive Mach-Zehnder modulator (SD-MZM) is employed, after which five primary modulation sidebands are generated. By controlling the power of five modulation sidebands, optical intensity with expression corresponding to the first two-term Fourier expansion of triangular-shaped waveform signal can be obtained. In Ref. [10], a method to generate triangular-shaped waveform signal using a MZM incorporating stimulated Brillouin scattering (SBS) in an optical fiber is proposed. Triangular-shaped waveform can also be obtained by using time-domain synthesis [11], external modulation by cascaded MZMs [12] and MZM combined with an optical interleaver [13] or a dispersive element [14]. It can be seen from these approaches that external modulation is a feasible way to generate triangular-shaped waveform signals.

In this paper, we propose a photonic-assisted approach to generate frequency-quadrupled triangular-shaped waveform signals. Firstly, a DP-MZM is employed to implement the quadrupling RF modulation. By setting the modulation index of DP-MZM within a proper range, two primary optical sidebands (\pm 2nd) can be obtained in optical spectrum. Then the signal is transmitted to a DD-MZM for ODSB modulation, after which four sidebands (\pm 2nd and \pm 6th) are achieved. Dispersion induced power fading in a piece of SMF is applied to remove

https://doi.org/10.1016/j.yofte.2018.08.020

^{*} Corresponding author at: Key Lab of All Optical Network and Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044, China. *E-mail addresses:* 15111021@bjtu.edu.cn (J. Yuan), lipei@bjtu.edu.cn (L. Pei).

Received 31 March 2018; Received in revised form 4 August 2018; Accepted 26 August 2018 1068-5200/ © 2018 Published by Elsevier Inc.

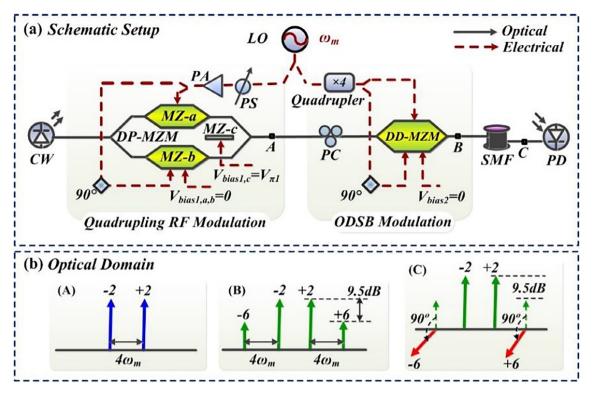
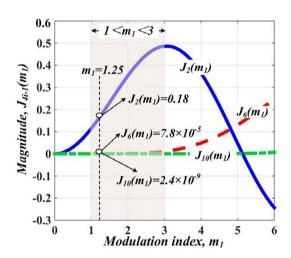


Fig. 1. (a) Schematic setup of the proposed triangular-shaped waveform signal generator. (b) The corresponding spectrum diagram. (CW, continuous-wave laser; LO, local oscillator; DP-MZM, dual-parallel Mach-Zehnder modulator; DD-MZM, dual-drive Mach-Zehnder modulator; PA, power amplifier; PS, phase shifter; PC, polarizer controller; SMF, single mode fiber; PD, photodiode.)


the undesired harmonic. Optical intensity expression corresponding to the first two-term Fourier expansion of a triangular-shaped waveform can be achieved. The quadrupling RF modulation and ODSB modulation are verified by a proof-of-concept experiment. Finally, a 16 GHz triangular-shaped waveform signal is generated by using a 4 GHz sinusoid signal.

1. Principle and theoretical analysis

The schematic diagram of the proposed triangular-shaped waveform generator is illustrated in Fig. 1. A light wave from a CW laser is firstly coupled into a DP-MZM, whose two sub-MZMs (MZ-a and MZ-b) are biased at maximum transmission point (MATP) and parent MZ-c is biased at minimum transmission point (MITP). A RF signal is split into two paths by a power divider. One path is divided into two parts by a 90° electrical bridge to drive two sub-MZMs, after which DP-MZM is under quadrupling RF modulation. The driving signal of DP-MZM is expressed as $V_{rf1}(t) = V_1 exp(j\omega_m t)$. The optical field of input light wave is $E_{in}(t) = E_0 exp(j\omega_0 t)$, in which E_0 and ω_0 denotes the amplitude and angular frequency. When the extinction ratio of DP-MZM is assumed to be infinite, the optical field at output of DP-MZM can be expressed as [15]

$$E_{A}(t) = \frac{E_{in}(t)}{2} \{ \exp[j\frac{V_{1}}{2V_{\pi 1}}\cos(2\omega_{m}t)] + \exp[-j\frac{V_{1}}{2V_{\pi 1}}\cos(2\omega_{m}t)] \\ + \exp[-j\frac{V_{1}}{2V_{\pi 1}}\sin(2\omega_{m}t)] - \exp[j\frac{V_{1}}{2V_{\pi 1}}\sin(2\omega_{m}t)] \} \\ = \frac{E_{in}(t)}{2} \sum_{i=-\infty}^{\infty} a_{4i-2}\exp[j(4k-2)\omega_{m}t]$$
(1)

where $a_{4i-2} = [j^{4i-2} + j^{4i-2}(-1)^{4i-2} - (-1)^{4i-2} - 1]J_{4i-2}(m_1)$. $J_n(\bullet)$ is the *n*th-order Bessel function of the first kind. The parameter $m_1 = \pi V_1/2V_{\pi 1}$ is the modulation index of DP-MZM, in which $V_{\pi 1}$ denotes the halfwave switching voltage of DP-MZM. Fig. 2 gives the relationship between m_1 and $J_{4i-2}(m_1)$. It can be seen that when m_1 is adjusted within a range from 1 to 3, the value of $J_6(m_1)$ and $J_{10}(m_1)$ are far smaller than

Fig. 2. Relationship between Bessel function of the first kind, $J_{4i-2}(m_1)$ and modulation index, m_1 .

that of $J_2(m_1)$. This indicates that the impact of harmonics higher than 2nd–order can be neglected.

As a modulator with relatively small modulation index is preferred, we tune m_1 to 1.25 for the following analysis. In this case, $J_6(m_1)$ and $J_{10}(m_1)$ are 7.8×10^{-5} and 2.48×10^{-9} , while $J_2(m_1)$ is 0.18. This indicates that the impact of the 6th- and 10th-order harmonics is negligibly small and only the \pm 2nd-order harmonics are considered. Thus, the optical field at the output of DP-MZM (point A) can be simplified as

$$E_A(t) \propto J_{-2}(m_1) \exp(-j2\omega_m t) + J_{+2}(m_1) \exp(j2\omega_m t)$$
 (2)

It is obvious that after quadrupling RF modulation, signal with only \pm 2nd-order sidebands and a frequency spacing of $4\omega_m$ are kept in optical spectrum as shown in Fig. 1(A). Then the modulated signal is coupled into a DD-MZM to provide the ODSB modulation. In Fig. 1,

Download English Version:

https://daneshyari.com/en/article/11002589

Download Persian Version:

https://daneshyari.com/article/11002589

Daneshyari.com