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A B S T R A C T

Queueing systems with processor sharing represent the adequate models for sharing the resources, e.g., com-
ponents of a computer or a bandwidth of communication systems. In this paper, we consider a queueing system
with processor sharing discipline under quite general assumptions about the arrival and service processes.
Arrivals are defined by the Markovian arrival process. The service time has a phase type distribution. Possible
impatience of customers is taken into account. The number of customers, which can simultaneously obtain
service, is limited. We compare two approaches for monitoring service of customers, namely, the approach
counting the number of customers at each phase of service and the approach counting the phase of service of
each customer and show the significant advantage of the former approach. We obtain the joint distribution of the
number of customers in the system and the states of the underlying arrival and service processes as well as the
loss probabilities. It is shown that the sojourn time in the system of an arbitrary customer has phase type
distribution and an irreducible representation of this distribution is obtained. Numerical examples are presented.
A possibility of optimal choice of the server capacity (e.g., multi-programming level) is numerically illustrated.
An opportunity of increasing the speed of computations via the use of the graphics processing unit is discussed.

1. Introduction

Processor sharing discipline is very popular in computers, commu-
nication systems and networks. For references and examples of real-
world applications see, e.g. [16], the surveys [32,33] as well as the re-
cent papers [19,31]. In particular, this discipline is very popular for tasks
scheduling in multi-programming computer systems. The model con-
sidered in our paper significantly extends possibility of adequate mod-
elling of such systems. We do not impose restrictive assumptions like an
exponential distribution of all times characterizing the behavior of the
system and a flow of tasks as well as on the number of tasks that share
the computer resources. The presented results allow to consider a task
processing in a computer or communication system as a whole sequence
of various operations, e.g., using CPU, GPU, RAM, I/O devices, etc, not
just a single operation duration of which has an exponential distribution.

In the classical settings, a processor can be shared by the unlimited
number of users and the majority of the existing literature is devoted to
the analysis of queueing systems under this assumption. However, in
many applications of this discipline in computer systems and commu-
nication networks this assumption is not fulfilled because a certain
minimal share of the bandwidth of the computer or channel has to be

guaranteed to provide acceptable quality of service to a customer.
Therefore, the limited processor sharing or processor sharing with a fi-
nite capacity is often considered. This kind of processor sharing sug-
gests that the maximal number, say N,N<∞, of users who may obtain
service simultaneously is fixed. Customers arriving when the capacity of
the server is not exhausted immediately start service with the rate
which is, in general, inversely proportional to the number of customers
in service. The majority of the existing research is addressed to analysis
of the simple M/M/1 type queues where it is assumed that the arrivals
are described by the stationary Poisson process and the service time
distribution is exponential. However, both these assumptions look quite
artificial in many real-world systems. In particular, it is already well
recognized that the stationary Poisson arrival process is not a good
descriptor of the real-world information flows and the Markovian ar-
rival process (MAP) suits much better for the description of such flows,
see, e.g. [6,17,30]. An exponential distribution is a very particular case
of the phase type (PH) distribution successfully used for approximation
of an arbitrary distribution, see, e.g. [1]. In our paper, to provide the
advanced model, we assume that the arrival process is defined by the
MAP and the service time distribution is of phase type. A short list of
related papers, in which at least one of the unrealistic assumptions that
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the arrivals are defined by the stationary Poisson process and the ser-
vice time distribution is exponential is omitted, is as follows. The model
with the infinite capacity of the server and the MAP is considered, e.g.,
in [10,18,20]. The model with the finite capacity and the MAP is con-
sidered, e.g., in [7,26]. It is worth to note that as a rule the problem of
computation of the stationary distribution of the number of customers
in the system under processor sharing discipline has a known solution
which coincides with the solution for the corresponding system with
first-in-first-out service discipline. The problem of computation of the
sojourn time distribution is more complicated. This problem for the M/
M/1 and MAP/M/1 systems with an infinite capacity was addressed in
[20,34], correspondingly. The moments of the sojourn time distribution
for the unreliable MAP/M/1 system with a finite capacity are computed
in [26]. In all cited above papers, it was assumed that the service time
has an exponential distribution. This assumption is more or less suitable
for modelling the systems with the coefficient of variation of the service
time equal to 1. However, in some real-world systems, including cel-
lular wireless communication networks, the distribution of the service
time may have higher variation, see, e.g. [23] and the hyper-ex-
ponential distribution describes the duration of holding times in such
networks better. The hyper-exponential distribution as well as the Er-
langian distribution is very particular case of the PH distribution. The
model of M/PH/1 type with unlimited processor sharing was con-
sidered in the paper [27]. The mathematical technique exploited for
analysis there can be hardly used in the case of theMAP arrival process.

In this paper, we consider the MAP/PH/1 queue with limited pro-
cessor sharing. The very recent paper [28] is devoted to detailed con-
sideration of an analogous system along with a survey of the related re-
search. However, there are three essential differences between our paper
and [28]. (i) We assume that a customer arriving when the capacity of the
server is exhausted is lost while in [28] it is assumed that such a customer
joins the buffer of an infinite capacity to obtain service later. It seems that
the model with customer loss better suits, e.g., for modelling bandwidth
sharing in wireless communication networks. (ii) In real-world systems,
customers may be impatient and leave the system before service com-
pletion due to long processing. When the processor is shared by many
customers, service of each customer becomes slower and importance of
account of an impatience phenomenon increases. In our model, we ac-
count possible impatience of customers. (iii) We use another description
of the system states by the multi-dimensional Markov chain. This de-
scription allows to compute characteristics of the system faster and for
much larger capacity N of the server. E.g., even in the case when the state
spaces of the underlying Markov processes of theMAP arrival process and
the PH distribution consists of only two states, it is more or less realistic to
compute characteristics of the system based on the classical description of
the system states only for N up to 12. The effective description applied in
our paper allows to make computations even for N equal to 1000.

The rest of the paper is organized as follows. In Section 2, the math-
ematical model of the system under study is described. The stationary
distribution of the number of customers in the system is analysed in
Section 3. The dynamics of the system is described by the multi-dimen-
sional Markov chain, the generator of which is derived and equilibrium
equations are written down. Formulas for the throughput of the system
and the customer loss probabilities (due to the server capacity exhausting
and due to impatience) are presented. In Section 4, it is shown that the
sojourn time of an arbitrary customer has a phase type distribution.
Section 5 contains the numerical results illustrating the dependence of the
key performance measures of the system on its capacity, correlation in the
arrival process and variance of the service times. An optimization problem
is considered in brief. An advisability of using for computations the gra-
phics processing unit (GPU) is discussed. Section 6 concludes the paper.

2. Description of the model

We consider a single-server queueing system without a buffer. The
arrival process is the MAP. Arrivals are controlled by the underlying

irreducible continuous-time Markov chain νt, t≥ 0, with a finite state
space … W{0, 1, , }. The MAP is defined by the square matrices

=D k, 0, 1,k of size +W 1 consisting of the intensities of transitions of
the Markov chain νt accompanied by the arrival of k customers. The
matrix +D D0 1 is an infinitesimal generator of the process νt. The sta-
tionary distribution vector θ of this process is the unique solution of the
system + = =θ 0 θD D e( ) , 10 1 where e is a column vector consisting
of1‘s’, and 0 is a zero row vector. The average intensity λ (fundamental
rate) of theMAP is given by = θλ D e.1 We assume that λ<∞. For more
detailed and exact definition of the MAP and motivation of its im-
portance for description of the correlated bursty arrival flows in modern
communication networks see [6,17,30].

The service time of an individual customer (service in absence of
other customers) has a PH distribution with an irreducible representa-
tion (β, S). This service time can be interpreted as the time until the
underlying Markov process ηt, t≥ 0, with a finite state space

⋯ +M M{1, , , 1} reaches the single absorbing state +M 1, conditioned
on the fact that the initial state of this process is selected among the
transient states ⋯ M{1, , } with probabilities defined by the entries of the
probabilistic row vector = …β β β( , , )M1 . The transition rates of the
process ηt within the set ⋯ M{1, , } are defined by the sub-generator S
and the transition rates into the absorbing state (which leads to service
completion) are given by the entries of the column vector = −S Se0 .
The Laplace-Stieltjes transform of the distribution having an irreducible
representation (β, S) is defined as − >−β SsI S Re s( ) , 0.1

0 For more
detailed information about the PH distribution see [21].

The problem of constructing the matrices D0, D1, S and the vector β
based on traces of real arrival and service processes is extensively ad-
dressed in the literature and may be more or less easily solved based on
the results from, e.g. [4,5,22].

We assume that up to N customers can be served simultaneously.
The number N is called the capacity of the server. If during an arbitrary
customer arrival epoch the number of customers in service is less than
N, the customer is admitted and immediately starts obtaining service. If
the number of customers in service is equal to N, the arriving customer
leaves the system permanently (is lost). The most well-known results
relating to the systems with processor sharing assume the exponential
distribution of individual customer service time. Let us denote the
parameter of this distribution (rate) by μ. It is assumed that when i
customers simultaneously receive service each customer is served with
the rate .μ

i Because here we assume the PH distribution of service time,
it is necessary at first to specify the interaction of simultaneous services.
It is reasonable to do this in the following way. It follows from the
description of the PH distribution given above that the service time of a
customer can be interpreted as the walking time of a customer in the
open network consisting of M nodes. The customer starts walking from
the node m with the probability =β m M, 1, .m Here, denotation like

=m M1, means that the variable m takes the values from the set
⋯ M{1, , }. Then, the customer makes the transitions within this net-

work. The intensities of the transitions are given by the entries of the
matrix S. Then, the customer leaves the network with the intensities
given by the entries of the column vector S0. From this interpretation, it
is clear that the starting phase of the service of any customer should be
chosen independently of other customers receiving service. The in-
dividual intensities of the transitions within the network during the
periods when i customers present in the system are defined by the
components of the sub-generator =S i N, 1, .i

1 The intensities of tran-
sitions leading to service completion are defined by the components of
the vector = − =S S i Ne, 1, .i i0,

1

It is worth to note that the presented below results can be easily
extended to the case of more general, than the supposed above, in-
versely proportional dependence of the intensities of the transitions
between the phases on the number i of customers presenting in the
system.

As it was mentioned in Introduction, account of customers im-
patience is very important in analysis of the processor sharing discipline
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