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A B S T R A C T

The use of discretization in decision analysis allows practitioners to use only a few assessments to estimate the
certain equivalent (CE) or expected value of a decision without knowing the functional form of the distribution
of each uncertainty. The discretization shortcuts are fast, but are created with a specific distribution, or families
of distributions in mind. The discretizations are not formulated with the decision problem in mind. Each dis-
cretization is specific to one uncertainty distribution, or is even more generalized. In this article, we introduce a
novel mathematical formulation for selecting an optimal discretization for a specific problem. With optimal
discretization, a decision analyst can use the newly-created shortcuts in repeated decisions and improve the
expected accuracy of the CE calculations.

1. Introduction

A common task in Decision Analysis is discretization, which involves
reducing probability distributions of uncertainties to just a few point
masses [13]. For many uncertainties in a Decision Analysis model,
determining the value of multiple points in a distribution, let alone, the
true distribution may be impossible or costly. Discretization is intended
to reduce the cost of calculating certain equivalents (CEs) and simplify
both communication and computation because it substitutes otherwise
complex and computationally intensive integrations to the evaluations
of just a handful of utilities. Discretizations significantly improve a
decision analyst’s ability to communicate with clients [16]. Even with
an increase in computing power, discretizations allow for human-un-
derstandable assessment and evaluation of decisions.

The discretization process can be thought of as having two distinct
components. The first component is to select the points that will be used
for discretization. Often, these points are chosen to be percentiles of the
original distribution. The second component of discretization is to as-
sign a probability mass to each point. An example of a discretization
applied to two common distributions is shown in Fig. 1.

Because of the usefulness of discretization, many methods for dis-
cretization exist [13]. One discretizations method divides the prob-
ability distribution into intervals based on values or cumulative dis-
tributions. Each interval is given a percentile equal to it median or its
mean. Finally, each interval is assigned a probability based on the size
of the interval. Another way of discretizing is to choose percentiles and
probabilities that match the moments of the original distribution.

Typically, the underlying distributions of the uncertainties are un-
known. As a result, these methods have given way to shortcut methods
that are easy to implement and work across a broad range of distribu-
tions. Decision analysts seek discretization methods that produce near-
correct certain equivalents across the entire class of decision problems
of interest. Typically the number of percentiles that a decision analyst
uses in a discretization is three, which provide a low, high, and most-
likely value.

Though shortcut methods are easy to use, they are not created with
the decision problem in mind. This can lead to reduced accuracy and
situations where the results of different strategies are within a few
percent of each other, sub-optimal decisions. Our method for choosing a
discretization differs from these methods in that we seek a set of dis-
cretizations that provide the lowest certain equivalent error over a large
set of potential distributions for a specific problem. The error particu-
larly matters when the certain equivalent of a decision is close to zero.
In a go, no-go decision, an error in the calculated certain equivalent
would result in the wrong decision. We generate problem-specific dis-
cretizations by solving an optimization problem that chooses the per-
centiles and the corresponding probabilities that minimize an error
metric over a large set of potential versions of a problem.

The main contributions of this article are: 1) We mathematically
formulate the problem of selecting an optimal discretization for a set of
decision problems. 2) We are able to derive tractable instances of this
optimization problem. These tractable instances allow us to compute
optimal discretizations for a specified set of decision problems. 3) Prior
discretization methods produce discretizations for each uncertainty in
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the decision problem. We introduce a joint discretization where the
probabilities of the percentiles of a discretization are not independent
from each other. The mathematical formulation for computing opti-
mized discretizations opens a new area of computing joint discretiza-
tions. Finally, we show that our methodology for computing in-
dependent and joint discretizations outperforms prior methods across a
set of computational examples.

This article is structured as follows. We begin with related work in
Section 2, describing some popular and novel methods of discretization.
Next we provide a general formulation for optimal discretization in
Section 3. The general formulation is followed by the a tractable in-
stance in Section 4.1 and modifications required to create a joint dis-
cretization in Section 4.2. In Section 5, we analyze two examples from
the literature to determine the benefits of optimal and joint dis-
cretization, and the effects of sampling and pre-determining percenti-
les.We conclude with a discussion and future work in Section 6.

2. Related work

Discretizations are typically divided into distribution-specific
methods and shortcuts. Distribution-specific methods require knowl-
edge of the probability density function (PDF) of an uncertainty’s dis-
tribution prior to discretization. These methods choose the discretiza-
tion based on some criteria of the original distribution that the decision
analyst is trying to match. Discretization shortcuts require experts to
assess a few (usually three) percentiles of the uncertainty’s distribution.
They do not require knowledge of the shape or moments and are easily
applied. A third type of method is a hybrid approach. This method
assumes limited knowledge of the underlying distribution and provides
a discretization based on this knowledge. Prior methods focus on
computing discretizations independently for each uncertainty. In areas
such as stochastic optimization there are more examples of multi-
variate discretizations [20]. We will review a few of these discretization
methods and compare them to our approach.

In a decision analysis project, if the client, decision analyst, or some
other expert knows the true distribution of each uncertainty, then the
decision analyst can determine the CE of even the largest problem using
Monte Carlo sampling or some other technique. With the true CE, the
decision analyst can recommend the strategy with the highest CE with
the certainty that this is the best recommendation. In reality, the form
of each uncertainty is unknown. The decision analyst will elicit as-
sessments for the uncertainties and apply a discretization to these un-
certainties to create an estimate of the CE.

Two common distribution-specific discretization methods are
bracket mean and Gaussian quadrature. Bracket mean, described by
McNamee and Celona [15], is also known as the equal areas

discretization. In bracket mean discretization, the PDF is partitioned
into three sections, with probabilities 0.25, 0.50, and 0.25. The per-
centiles assigned to each region represent the mean value within the
probability region. This method matches bounded means of the un-
certainty’s PDF. Though the method matches these bounded means for
each uncertainty, there is no guarantee that the discretization with
match the certain equivalent (CE) in the decision problem.

Miller III and Rice [16] and later Smith [19] proposed techniques
based on Gaussian quadrature (GQ). With a discretization of N points, it
is possible to match the first N2 1 moments of an uncertainty’s dis-
tribution. The idea behind matching the moments comes from con-
sidering expectations of low degree polynomials. A discretization that
matches an uncertainty in the first N2 1 moments, will produce the
same expectation for any N2 1 order polynomial. Smith [19] im-
proved the method for GQ by making it more efficient and provided
examples of how GQ matched the moments of the input distributions
([19], Table 2, P.345). GQ requires knowledge of the distributions
being discretized – at least its first N2 1 moments. If these are not
known in the literature, one may require complex numerical integra-
tions. An application of GQ also requires solving a multivariate system
of polynomial equations, which is easily computed with matrix ma-
nipulation software. The polynomial matching argument misses cross-
terms of the uncertainties when the utility depends on several un-
certainties. From a client perspective, this discretization may ask for
percentiles that are not easily assessed, such as the value of the un-
certainty at the 99.50th percentile. In contrast, our method is able to
limit the discretization’s percentiles to easily assessed values, directly
targets computing CEs, and the discretization is dependent on a set of
decision problems, as opposed to a single specific distribution.

Shortcuts are easy to use and generally perform well. Shortcut dis-
cretizations do not require knowledge of the distributions of the un-
certainties and apply the same discretization percentiles and prob-
abilities to all uncertainties. Two common shortcut methods are the
McNamee–Celona Shortcut (MCS) and the Extended Swanson–Megill
(ESM) method. Both of these discretization methods use the 10th, 50th,
and 90th percentiles. The Extended Swanson–Megill (ESM) method for
discretization is described by Hurst et al. [10] and is commonly used in
the oil and gas industries [2]. MCS assigns probabilities of
(0.25,0.50,0.25) while ESM assigns probabilities of (0.3,0.4,0.3) to each
of the respective percentiles. In examining several discretization
methods, Keefer and Bodily [13] proposed the Extended Pearson–Tukey
method. This method proposed using the 5th, 50th, and 95th percentile
with probabilities of (0.185,0.630,0.185). Keefer and Bodily [13] found
EPT outperformed several other methods. Additionally Hammond and
Bickel [8] found EPT to have the best performance among MCS, EPT,
and ESM when calculating average absolute error, average absolute
percent error, maximum error, and maximum percent error. While easy
to apply, these methods do not take into consideration specific
knowledge about the decision problem. In contrast, our method com-
putes an optimized discretization for a specific set of decision problems.

It is often known if the distributions of the uncertainties have spe-
cific shapes or are bounded. For example, when drilling for oil it can be
assumed that the percentage of oil to be recovered will be between 0
and 100%. To that extent, there are newer shortcuts that are based on
shape-specific assumptions. Hammond and Bickel [9] and Hammond
and Bickel [8] offer new shortcuts based on the Pearson and Johnson
families of distributions. Based on the specific zone of the assumed
distribution of the uncertainty, Hammond and Bickel [8] provide a
specific discretization to use. For example, a normal distribution is
symmetric and unbounded on either side. A log-normal distribution is
bounded from below, might be right-skewed, and unbounded from
above. These methods are similar to the shortcut methods, but address a
specific family of distributions. There are shortcuts for bounded, semi-
bounded, and unbounded distributions. The purpose is to provide a
better discretization that uses potentially available information while
still allowing for an unknown distribution. Distribution-specific

Fig. 1. These are two examples of the same three-point discretization applied to
a standard normal and a log-normal distribution. The placement of the points
on the independent axis are determined by the percentiles of the discretization,
and the height is based on the probabilities assigned.
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