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a  b  s  t  r  a  c  t

A  very  recently  developed  metaheuristic  method  called  Jaya  algorithm  (JA)  is  implemented  in  this  study
for  sizing  and  layout  optimization  of  truss  structures.  The  main  feature  of  JA  is that  it  does  not  require
setting  algorithm-specific  parameters.  The  algorithm  has  a  very  simple  formulation  where the  basic
idea  is  to  approach  the best  solution  and  escape  from  the  worst  solution.  The  original  JA formulation  is
modified  in  this  research  in  order  to improve  convergence  speed  and  reduce  the  number  of  structural
analyses  required  in  the  optimization  process.  The  suitability  of  JA  for  truss  optimization  is investigated
by  solving  six  classical  weight  minimization  problems  of  truss  structures  including  sizing,  layout  and
large-scale  optimization  problems  with  up to 204 design  variables.  Discrete  sizing/layout  variables  and
simplified  topology  optimization  also  are  considered.  The  test  problems  solved  in  this  study  are  very
common  benchmarks  in  structural  optimization  and  practically  describe  all scenarios  that  may  be  faced
by designers.  The  results  demonstrate  that  JA  can  obtain  better  designs  than  those  of  the other  state-of-
the-art  metaheuristic  and  gradient-based  optimization  methods  in terms  of optimized  weight,  standard
deviation  and  number  of  structural  analyses.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Metaheuristic algorithms try to achieve a dynamic balance
between exploration of search space (i.e. “diversification” phase)
and exploitation of accumulated search experience (i.e. “intensifi-
cation” phase). This balance allows to quickly identify regions of
design space containing high quality solutions as well as to bypass
regions that either were already explored or are far from global
optimum [1–3].

Metaheuristic optimization methods such as, for example,
genetic algorithms (GA) [4,5], simulated annealing (SA) [6,7], evo-
lution strategies (ES) [8,9], ant colony optimization (ACO) [10,11],
particle swarm optimization (PSO) [12,13], harmony search opti-
mization (HS) [14,15], artificial bee colony algorithm (ABC) [16],
big bang-big crunch optimization (BB-BC) [17], charged system
search (CSS) [18], firefly algorithm (FFA) [2], teaching-learning-
based optimization (TLBO) [19], flower pollination algorithm (FPA)
[20], swallow swarm optimization algorithm (SSO) [21] and water
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evaporation optimization (WEO) [22], have been successfully used
in every field of science and engineering.

Truss structures are very often selected as benchmark design
problems to test the efficiency of metaheuristic algorithms. Just to
cite a few examples from the extensive optimization literature, GA
using different search operators and re-analysis strategies [23–30],
differential evolution with various search schemes [31–35], SA
based on single or multi-level search [36–39], particle swarm
optimization with different modelling of social/individual behav-
ior, combination of global/local best and center of mass particles
[40–44], harmony search optimization with different search and
parameter adaptation strategies [45–49], big bang big crunch big
bang-big crunch optimization with different definition of trial
designs and infrequent explosions [48,50–52], teaching-learning
based optimization [53–56], artificial bee colony algorithm with
adaptive penalty approach [57], firefly algorithm [58,59], cultural
algorithm [60], flower pollination algorithm [61], water evapo-
ration algorithm [62], hybrid methods combining two  or more
metaheuristic algorithms, as well as metaheuristic algorithms and
gradient-based optimization [63–66]. Further information can be
found in classical textbooks [2], review papers [67,68] and studies
comparing the relative efficiency of several metaheuristic algo-
rithms in static and dynamic truss optimization problems [69,70].

https://doi.org/10.1016/j.asoc.2017.10.001
1568-4946/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2017.10.001
https://doi.org/10.1016/j.asoc.2017.10.001
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:sozgurd@gmail.com
https://doi.org/10.1016/j.asoc.2017.10.001


Please cite this article in press as: S.O. Degertekin, et al., Sizing, layout and topology design optimization of truss structures using the
Jaya algorithm, Appl. Soft Comput. J. (2017), https://doi.org/10.1016/j.asoc.2017.10.001

ARTICLE IN PRESSG Model
ASOC-4496; No. of Pages 26

2  S.O. Degertekin et al. / Applied Soft Computing xxx (2017) xxx–xxx

The continuously increasing computational power has favored
the blooming of new metaheuristic algorithms that are often
claimed by authors to be very competitive with the most popular
state-of-the-art optimizers. However, finding the global optimum
at a reasonably low computational cost for all problems with a
limited sensitivity to the selection (i.e. size and composition) of
initial population and the setting/adaptation of internal parame-
ters that drive the search process remains an unresolved issue in
metaheuristic optimization.

An interesting metaheuristic algorithm that has a very simple
formulation and does not require internal parameters is the JAYA
algorithm (JA) developed by Rao in 2016 [71]. The JA algorithm was
successfully tested on several benchmark functions. Rao and Wagh-
mare [72] later utilized the JA for solving constrained mechanical
design problems such as robot gripper, multiple disc clutch brake,
hydrostatic thrust bearing and rolling element bearing. The effi-
ciency of the JA with respect to other metaheuristic algorithms was
demonstrated also for these test problems. The JA was  used also
for sizing optimization of a micro-channel heat sink [73] by tak-
ing thermal resistance and pumping power as objective functions
and micro-channel width, depth and fin width as design variables.
Once again JA resulted very competitive or even better than those
obtained for TLBO and multi-objective evolutionary algorithms.

The main objective of this study is to evaluate the suitability of
the JA algorithm for weight minimization of truss structures. This
test suite is selected because of the tremendously large amount
of data available in literature, which allows comprehensive and
detailed comparisons to be carried out. Sizing optimization prob-
lems of trusses with 200, 942 and 1938 elements, and combined
sizing-layout optimization problems of trusses with 25, 45 and 47
elements are solved for that purpose. Sizing optimization problems
include up to 204 design variables while combined sizing-layout
optimization problems include up to 81 design variables. Discrete
sizing/layout variables and simplified topology optimization also
are considered. The original JA formulation is modified in order to
improve convergence speed thus reducing the number of structural
analyses required in the optimization.

The results obtained by the JA are compared with those of
other state-of-the-art metaheuristic optimization methods includ-
ing variants of genetic algorithms, differential evolution, simulated
annealing, particle swarm, harmony search, big bang big crunch,
artificial bee colony, teaching-learning based optimization, cultural
algorithm, firefly algorithm, flower pollination algorithm, water
evaporation optimization, hybrid particle and swallow swarm opti-
mization, hybrid particle swarm, ant colony and harmony search
optimization. Comparisons with gradient-based optimizers also are
presented in the article. The performance of JA is evaluated in terms
of minimum weight, standard deviation on optimized weight and
number of structural analyses required in the optimization pro-
cess. In all test problems, JA is compared with the best solutions
available in metaheuristic optimization literature as well as with
commercial software. A statistical analysis of the best, average and
worst optimized weights and corresponding standard deviations
obtained over independent optimization runs is performed. Results
prove that the proposed algorithm is very competitive with the
other metaheuristic methods and its convergence speed is similar
to gradient-based optimizers.

The paper is structured as follows. The formulation of the design
optimization problem for truss structures is recalled in Section 2.
The JAYA algorithm is described in Section 3 along with its imple-
mentation for truss structure problems. Section 4 describes the test
problems and discusses optimization results. Section 5 summa-
rizes the main findings of this study. Sensitivity of JA convergence
behavior to population size is analyzed in detail in the Appendix.

2. Optimization of truss structures

The objective of truss optimization is to minimize the weight of
the structure under design constraints such as element stresses and
nodal displacements. The sizing optimization problem of a truss
structure can be stated as:

Find A = [A1, A2, ....., Ang]

To minimize W(A)  =
nm∑
i=1

�iAiLi

Subjected to
�c
i

≤ �i ≤ �t
i
, i = 1, 2, . . .., nm

ımin ≤ ıj ≤ ımax, j  = 1, 2, . . ..., nn

Amin ≤ Ak ≤ Amax, k = 1, 2, . . .., ng

(1)

where the A vector contains the sizing variables (i.e. cross-sectional
areas of bars), W(A) is the weight of the truss structure. �i and Li,
respectively, are the material density and the length of member i.
Ai is the cross-sectional area of member i with the corresponding
lower/upper bounds Amin and Amax. Each truss design must satisfy
design constraints on member stresses �i for each element i and
displacements ıj for each node j. �c

i
and �t

i
are the allowable com-

pression and tension stresses for member i. ımin and ımax are the
allowable displacements for node j. nm is the number of members
in the truss structure, nn is the number of nodes, ng is the number
of member groups (i.e. number of design variables).

For optimization problems including also layout variables, the
cost function can be rewritten as:

Minimize W(A, X) = �

nm∑
i=1

Ai

√
(xi1 − xi2)2 + (yi1 − yi2)2 + (zi1 − zi2)2 (2)

where xi1,2, yi1,2, zi1,2 are the coordinates of the nodes limiting
the ith element of the structure. The optimization problem hence
includes ndv design variables where ndv is the sum of the ng ele-
ment cross-sectional areas included as sizing variables and nlay
nodal coordinates included as layout variables. In topology opti-
mization, elements can be removed from the structure if their
cross-sectional areas become very small (for example, 10−7 in2).

Stress and displacement constraints to be satisfied are handled
by using a penalty function. The penalized objective function Fp is
obtained as the product between the truss weight W(A,X) and the
penalty function  p as follows:

Fp = W(A, X) ×  p (3)

The penalty function is defined as:

 p = (1 + �)ε (4)

where � is the summation of the stress and displacement penalties,
defined as:

� =
nm∑
i=1

�i� +
nn∑
j=1

�j
ı

(5)

The stress constraint penalty �i� for member i and the displace-
ment constraint penalty �j

ı
for node j are respectively defined as:

⎧⎨
⎩
�i� = 0 if �c

i
≤ �i ≤ �t

i

�i� = |�i − �t,c |
|�t,c | if �i < �ci or �i > �ti

(6)

⎧⎪⎨
⎪⎩

�j
ı

= 0 if ımin ≤ ıj ≤ ımax

�j
ı

=
|ıj − ımax,min|

|ımax,min| if ıj < ımin or ıj > ımax

(7)
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