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a  b  s  t  r  a  c  t

Kernel  dependence  measures  yield  accurate  estimates  of  nonlinear  relations  between  random  variables,
and they  are  also  endorsed  with  solid  theoretical  properties  and  convergence  rates.  Besides,  the  empirical
estimates  are  easy  to compute  in closed  form  just  involving  linear  algebra  operations.  However,  they  are
hampered  by  two important  problems:  the  high  computational  cost  involved,  as  two  kernel  matrices  of
the sample  size  have  to  be computed  and  stored,  and  the interpretability  of the  measure,  which  remains
hidden  behind  the implicit  feature  map. We  here  address  these  two  issues.  We  introduce  the  sensitivity
maps  (SMs)  for the  Hilbert–Schmidt  independence  criterion  (HSIC).  Sensitivity  maps  allow  us to  explicitly
analyze  and  visualize  the  relative  relevance  of  both  examples  and  features  on  the  dependence  measure.
We  also  present  the  randomized  HSIC  (RHSIC)  and  its corresponding  sensitivity  maps  to  cope  with  large
scale  problems.  We build  upon  the  framework  of  random  features  and the  Bochner’s  theorem  to  approx-
imate  the  involved  kernels  in  the  canonical  HSIC.  The  power  of the RHSIC  measure  scales  favourably
with  the  number  of  samples,  and  it  approximates  HSIC  and  the sensitivity  maps  efficiently.  Convergence
bounds  of  both  the  measure  and  the sensitivity  map  are  also provided.  Our  proposals  are  illustrated  in
many  synthetic  illustrative  examples,  and  challenging  real problems  of  dependence  estimation,  feature
selection,  and  causal  inference  from  empirical  data.  The  methods  allow  estimating  and  visualizing  HSIC
in  large  scale  data  regimes,  while  still  yielding  closed-form  analytical  solutions.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The problem of estimating statistical dependencies between
random variables is ubiquitous in Science and Engineering, and
the basis to discover causal relations from empirical data. Many
methods exist to this purpose. Very often one traditionally resorts
to Pearson’s correlation, but the measure can only identify lin-
ear associations between random variables. Other measures of
dependence, such as the Spearman’s rank or the Kendall’s tau
criteria, assume monotonically increasing variable relations, and
can be better suited in problems exhibiting such relations. All of
them, however, can be computed for pairs of variables only, and
thus the multidimensional problem of dependence estimation is
tackled by repeating the test for all pairwise combinations, and
then summarizing the ‘dependence matrix’ into an ad hoc overall
statistic.

In recent years, we have witnessed the introduction of an
increasing amount of nonlinear dependence measures. Among the
vast amount of criteria, kernel dependence methods exhibit some
good properties [1]. They typically reveal (1) good robustness
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properties in high dimensional and low number of samples
settings; (2) criteria are not restricted to estimate pairwise
dependencies, but capture higher-order relations between (mul-
tidimensional) random variables; (3) the empirical estimates are
very simple to implement in closed form and only involve ker-
nel matrix computation and linear algebra operations; (4) there is
a well-founded theoretical background to study and characterize
them, and fast converge rates to the true measure can be derived;
and (5) one can actually derive p-values associated to the empirical
measure. In this paper, we  focus on improving the family of ker-
nel dependence estimates in terms of computational efficiency and
interpretability.

The principle underlying kernel-based dependence estimation
is to define covariance and cross-covariance operators in reprodu-
cing kernel Hilbert spaces (RKHS) [2], and derive statistics from
these operators capable of measuring dependence between func-
tions therein. In [3] the largest singular value of the kernel canonical
correlation analysis (KCCA) – which uses both covariance and
cross-covariances – was used as a statistic to test independence.
Later, in [4], the constrained covariance (COCO) statistic was pro-
posed, which uses the largest singular value of the cross-covariance
operator: high efficiency was obtained with virtually no regulariza-
tion needed. A variety of empirical kernel quantities derived from
bounds on the mutual information that hold near independence
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were also proposed: namely the kernel Generalised Variance (kGV)
and the Kernel Mutual Information (kMI) [5,1].

Among the most interesting kernel dependence methods, we
find the Hilbert–Schmidt Independence Criterion (HSIC) [6]. The
method consists of measuring cross-covariances in a proper RKHS,
and generalizes several measures, such as COCO, by using the entire
spectrum of the cross-covariance operator, not just the largest sin-
gular value. The HSIC empirical estimator is very easy to compute,
has good theoretical properties [6,1], and yields very good results
in practice, e.g. HSIC has been successfully used for ranking [7],
clustering [8], dimensionality reduction [9], screening [10], image
representation for classification [11], sensitivity analysis [12,10],
as well as feature selection from satellite images [13] and gene
expression [14].

Kernel dependence estimates such as HSIC however face two
main challenges: (1) the measure is hardly interpretable in geo-
metric terms, as it is based on implicit mappings reproduced via
reproducing kernel functions; and (2) the method scales poorly
with the number of examples, as it involves computing and stor-
ing kernel matrices of the sample size. We  will tackle these two
important limitations in this paper, illustrating the methodology
for the particular case of HSIC. Specifically, the contributions are
summarized as follows:

• In order to analyze and visualize the kernel dependence mea-
sure, we propose to derive sensitivity maps (SMs) of the estimate.
Sensitivity maps allow us to explicitly analyze and visualize the
relative relevance of both examples and features on the depend-
ence measure [15]. Our inspiration is a probabilistic approach to
derive sensitivity maps for Support Vector Machines (SVM) in
neuroimage applications [16], which has been recently extended
to the field of Gaussian Processes (GPs) visualization in geoscience
problems [17,18]. In both cases, the goal was to study the sensi-
tivity (relevance, impact) of features on the learned supervised
model. In our case, however, we deal with the more challenging
unsupervised scenario of scrutinizing kernel-based dependence
measures. For this, we develop the SMs  to visualize and study
HSIC dependence measure quantitatively. We  will show that the
SMs  provide a vector field that allows us to identify both examples
and features most affecting the measure of dependence.

• In order to alleviate the high computational burden involved in
both HSIC and its SM,  we here introduce the randomized HSIC
(RHSIC), and derive an efficient SM that still preserves the appeal-
ing closed-form computation property. Essentially, we replace
the involved kernels in HSIC by explicit mappings generated via
linear projections on random features. This approximation builds
upon the framework of random features originally introduced in
[19,20] and the Bochner’s theorem [21,22]. We  want to highlight
that introducing the RHSIC is not incidental, but capitalizes on the
fact that still permits to derive sensitivity maps in a very efficient,
closed-form manner.

The remainder of the paper is organized as follows. Section 2 fixes
notation, briefly introduces the HSIC estimate, and presents the
randomized HSIC for computational efficiency. We  also discuss on
the computational gain and on the convergence rates for the esti-
mate, the decision threshold and the associated p-values. Section 3
introduces the sensitivity maps for both HSIC and its random-
ized version. Section 4 shows experiments of the performance of
RHSIC and the properties of the sensitivity maps. In particular, we
give empirical evidence of performance of the sensitivity maps in
both synthetic examples that allow us to understand dependence
measures, and challenging real problems of dependence estima-
tion, feature ranking, and causal inference from empirical data. We
emphasize the usefulness of the sensitivity maps for data visual-
ization, and point out the relation to the field of leveraging points.

Section 5 concludes this paper with some remarks and future
research lines. Source code and demos are given for the interested
reader, and some theoretical properties of convergence of the ran-
domized measure and its sensitivity are given in Appendices A and
B.

2. Efficient HSIC dependence estimation

To fix notation, let us consider two  spaces X  ⊆ R
dx and Y  ⊆ R

dy ,
on which we  jointly sample observation pairs (x, y) from distribu-
tion Pxy. The covariance matrix can be defined as

Cxy = Exy(xy�) − Ex(x)Ey(y�), (1)

where Exy is the expectation with respect to Pxy, Ex is the expec-
tation with respect to the marginal distribution Px (hereafter, we
assume that all these quantities exist), and y� is the transpose
of y. The covariance matrix encodes all first order dependencies
between the random variables. A statistic that efficiently summa-
rizes the content of this matrix is its Hilbert–Schmidt norm. The
square of this norm is equivalent to the squared sum of its eigen-
values � i:

‖Cxy‖2
HS =

∑
i

�2
i . (2)

This quantity is zero if and only if there exists no first order depend-
ence between x and y. Note that the Hilbert Schmidt norm is limited
to the detection of second order relations, and thus more complex
(higher-order effects) cannot be captured.

2.1. Kernel dependence estimation

Let us define a (possibly non-linear) mapping � : X  → F such
that the inner product between features is given by a positive defi-
nite (p.d.) kernel function Kx(x, x′) = 〈�(x), �(x′)〉. The feature space
F has the structure of a reproducing kernel Hilbert space (RKHS). Let
us now denote another feature map    : Y  → G with associated p.d.
kernel function Ky(y, y′) = 〈 (y),  (y′)〉. Then, the cross-covariance
operator between these feature maps is a linear operator Cxy :
G → F such that Cxy = Exy[(�(x) − �x) ⊗ ( (y) − �y)],where ⊗ is
the tensor product, �x = Ex[�(x)], and �y = Ey[ (y)]. See more
details in [23,24]. The squared norm of the cross-covariance oper-
ator, ‖Cxy‖2

HS, is called the Hilbert–Schmidt Independence Criterion
(HSIC) and can be expressed in terms of kernels [6]. Given the sam-
ple datasets X ∈ R

n×dx , Y ∈ R
n×dy , with n pairs {(x1, y1), . . .,  (xn,

yn)} drawn from the joint Pxy, an empirical estimator of HSIC is [6]:

HSIC(F, G, Pxy) = 1
n2

Tr(KxHKyH) = 1
n2

Tr(HKxHKy), (3)

where Tr(·)  is the trace operation (the sum of the diagonal entries),
Kx, Ky are the kernel matrices for the input random variables x and
y, respectively, and H = I − 1

n 11� centers the data in the feature
spaces F and G, respectively.

2.2. The randomized HSIC

An outstanding result in the recent kernel methods litera-
ture makes use of a classical definition in harmonic analysis to
improve approximation and scalability [19,20]. The Bochner’s the-
orem [21,22] states that a continuous kernel K(x, x′) = K(x − x′) on
R
d is positive definite (p.d.) if and only if K is the Fourier transform

of a non-negative measure. If a shift-invariant kernel K is properly
scaled, its Fourier transform p(w) is a proper probability distribu-
tion. This property is used to approximate kernel functions and
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