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a  b  s  t  r  a  c  t

Neural  networks  with  random  weights  have  the advantage  of  fast computational  time  in both  training
and  testing.  However,  one  of the  main  challenges  of single  layer  feedforward  neural  networks  is the
selection  of  the optimal  number  of neurons  in the  hidden  layer,  since  few/many  neurons  lead  to  problems
of underfitting/overfitting.  Adapting  Garson’s  algorithm,  this  paper  introduces  a  new  efficient  and  fast
non-iterative  algorithm  for the selection  of neurons  in  the hidden  layer  for randomization  based  neural
networks.  The  proposed  approach  is divided  into  three  steps:  (1)  train  the  network  with  h hidden  neurons,
(2)  apply  Garson’s  algorithm  to the  matrix  of the  hidden  layer,  and  (3)  perform  pruning  reducing  hidden
layer  neurons  based  on  the  harmonic  mean.  Our experiments  in  regression  and  classification  problems
confirmed  that the  combination  of  the  pruning  technique  with  these  types  of  neural  networks  improved
their  predictive  performance  in terms  of  mean  square  error  and  accuracy.  Additionally,  we  tested  our
proposed  pruning  method  with  neural  networks  trained  under  sequential  learning  algorithms,  where
Random  Vector  Functional  Link  obtained,  in  general,  the best  predictive  performance  compared  to online
sequential  versions  of  extreme  learning  machines  and  single  hidden  layer  neural  network  with  random
weights.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Single layer feedforward neural networks (SLFNs) with random
weights, as random basis function approximators, have received
considerable attention in classification and regression problems
because of their universal approximation capability [1–3]. Special
features of these learner models come from weights specification,
that is, the input weights and biases are randomly assigned and the
output weights can be analytically evaluated by a Moore–Penrose
generalized inverse of the hidden output matrix.

Neural networks with random weights have many advantages
in comparison to other iterative methods of learning, such as back-
propagation (BP) [4] or support vector machine (SVM) [5]. The first
advantage is the computational time required to train the model,
being much lower in comparison to iterative methods. A second
advantage is that the user only needs to specify the number of
hidden neurons. Nevertheless, this parameter in many cases has

∗ Corresponding author at: Facultad de Ingeniería y Ciencias, Universidad Adolfo
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a significant impact on the performance of the model, therefore
a method to assist in the selection of the architecture of SLFNs is
desirable. Typically, the number of neurons in the hidden layer is
pre-determined by a trial-and-error approach [6]. It is known that
neural networks with a small hidden layer will not be capable of
generalizing the training data (underfitting); on the other hand, if
the network has a large number of hidden neurons, this can give
place to overfitting. Therefore, the number of hidden neurons plays
a crucial role in an appropriate training of SLFNs. To address this
issue, research work has focused primarily on determining the net-
work’s architecture within the learning algorithm. This approach
consists in the pruning of unnecessary neurons during the training
process [7,8].

In the last decades, several methods to determine the contribu-
tion of each input variable (attribute) have been proposed, such as
the PaD method [9], Perturb method [10], and the Profile method
[11]. In the literature there are many methods for the assessment
of the relative importance of the independent variables. Garson
developed an algorithm based on the connection weights of a neu-
ral network in order to determine the relative importance of each
input variable [12]. This same idea was modified and applied by
Goh [13].
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As mentioned, the above methods are concerned with the
importance of the input variables (for feature selection). Instead, we
consider in this work, the determination of the relative importance
of neurons in the hidden layer for pruning purposes. In particu-
lar, due to its non-iterative nature, simplicity, and effectiveness, as
shown in [14–17], we adapt Garson’s algorithm for pruning hidden
nodes in neural networks with random weights.

The contributions of this paper are as follows:

• We  propose a non-iterative method for pruning hidden neu-
rons for a single hidden layer neural network with random
weights (RWSLFN), Random Vector Functional Link Network
(RVFL), Extreme Learning Machines (ELM), and randomized neu-
ral networks in general.

• The proposed method is based on Garson’s algorithm, which is
commonly used for feature selection (input layer) in the context
of neural networks, but not for pruning hidden nodes.

• We evaluate and compare the performance and training time
of the proposed method for regression and classification prob-
lems, considering iterative and non-iterative methods in neural
networks with random weights.

The paper is organized as follows. Section 2 presents non-
iterative learning algorithms for neural networks with random
weights. The proposed method called Garson-pruned (GP) is intro-
duced in Section 3. Section 4 describes our experimental setup and
procedures. In Section 5, we compare the performance using differ-
ent thresholds. The results in regression and classification problems
using the proposed method and comparisons with other algorithms
is presented in Section 6. Section 7 describes the proposed method
applied to sequential algorithms. And finally, in Section 8, we  draw
the main conclusions from our work.

2. Non-iterative learning algorithms for neural networks
with random weights

In the literature, there are many kinds of randomization of the
inner weights for feedforward neural networks. A schematic dia-
gram of an SLFN with random weights is shown in Fig. 1. In 1992, for
instance, Schmidt et al. [18] proposed a single hidden layer neural
network with random weights (RWSLFN) assignments between the
input and hidden layers and least-square estimation on the output
weights as the training method. In 1994, Pao et al. [19] proposed a
functional link neural network named Random Vector Functional
Link Network (RVFL). In 1996, Chen et al. [20] found the maxi-
mum  number of hidden nodes to be N − r − 1 for RVFL network
with a constant bias to learn a mapping within a given precision
based on an n-dimensional N-pattern dataset, where r is the rank
of the dataset. Furthermore, a robust weighted least-square method
is proposed in order to eliminate outliers. In 1998, Broomhead
et al. [21] studied the implicit assumptions made when employ-
ing a feedforward layered network model to analyze complex data.
The use of radial basis function networks (RBF) is considered by
Lowe [22] and Park et al. [23]. In particular, this latter work offers
a proof that RBF networks with one hidden layer are capable of
universal approximation. Hornik [24] investigated the approxima-
tion ability of standard multilayer feedforward networks with as
few as one hidden layer. As shown by Hornik, when the activation
function is bounded and nonconstant, the standard multilayer feed-
forward networks are universal approximators. Recently, Zhang
and Suganthan [25] conducted a survey on randomized algorithms
for training neural networks. Among the different machine learning
techniques, a modified version of RWSLFN called extreme learning
machine (ELM), proposed by Huang et al. [26] in 2004, has gained
attention in the past few years [27].

Fig. 1. Schematic diagram of an SLFN with random weights. Dashed red arrows rep-
resent direct connections between input and output neurons. Dashed blue arrows
show the bias in the output node. (For interpretation of the references to color in
this  figure legend, the reader is referred to the web version of the article.)

The main procedure in non-iterative learning algorithms con-
sists in randomly fixing parameters in the model’s configurations,
rather than tuning them via a time-consuming iterative process
(such as BP [4] or SVM [5]).

Consider a training set containing N arbitrary distinct samples
{(xi, oi)}Ni=1, where xi = [xi1, xi2, . . .,  xin]T ∈ Rn and oi = [oi1, oi2, . . .,
oim]T ∈ Rm, with h hidden layer nodes and the activation function
g(x). In general, a non-iterative algorithm can be defined as

ôi =
h∑
j=1

ˇjg(wj · xi + bj) + b +
h+n∑
j=h+1

ˇj · xi, i = 1, . . .,  N, (1)

where wj = [wj1, wj2, . . ., wjn]T is the weight vector connecting the
jth hidden node with the input nodes. ˇj = [ˇj1, ˇj2, . . .,  ˇjm]T is
the weight vector connecting the jth hidden node with the output
nodes; bj is the threshold of the jth hidden node; h represents the
number of hidden neurons; b is a bias vector of length m in the
output neurons.

Eq. (1) can be written compactly as

H  ̌ = Ô,  (2)

where H is the hidden layer output matrix of the neural network,
computed as follows:

H(wj, bj, xi) =

⎡
⎢⎣
g(w1 · x1 + b1) · · · g(wh · x1 + bh) b xT1

.

.

.
.
.
.

.

.

.
.
.
.

g(w1 · xN + b1) · · · g(wh · xN + bh) b xT
N

⎤
⎥⎦
N×(h+1+n)

, (3)

 ̌ =

⎡
⎢⎢⎣
ˇ11 · · · ˇ1m

...
. . .

...

ˇ(h+1+n)1 · · · ˇ(h+1+n)m

⎤
⎥⎥⎦

(h+1+n)×m

, (4)
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