
Please cite this article in press as: P.A. Henríquez, G.A. Ruz, A non-iterative method for pruning hidden neurons in neural networks with
random weights, Appl. Soft Comput. J. (2018), https://doi.org/10.1016/j.asoc.2018.03.013

ARTICLE IN PRESSG Model
ASOC-4762; No. of Pages 13

Applied Soft Computing xxx (2018) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

A non-iterative method for pruning hidden neurons in neural
networks with random weights

Pablo A. Henríquez a, Gonzalo A. Ruz a,b,∗

a Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal Las Torres 2640, Peñalolén, Santiago, Chile
b Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile

a r t i c l e i n f o

Article history:
Received 29 September 2016
Received in revised form 5 March 2018
Accepted 10 March 2018
Available online xxx

Keywords:
Non-iterative learning
Neural networks
Random weights
Garson’s algorithm
Pruning
Regression
Classification

a b s t r a c t

Neural networks with random weights have the advantage of fast computational time in both training
and testing. However, one of the main challenges of single layer feedforward neural networks is the
selection of the optimal number of neurons in the hidden layer, since few/many neurons lead to problems
of underfitting/overfitting. Adapting Garson’s algorithm, this paper introduces a new efficient and fast
non-iterative algorithm for the selection of neurons in the hidden layer for randomization based neural
networks. The proposed approach is divided into three steps: (1) train the network with h hidden neurons,
(2) apply Garson’s algorithm to the matrix of the hidden layer, and (3) perform pruning reducing hidden
layer neurons based on the harmonic mean. Our experiments in regression and classification problems
confirmed that the combination of the pruning technique with these types of neural networks improved
their predictive performance in terms of mean square error and accuracy. Additionally, we tested our
proposed pruning method with neural networks trained under sequential learning algorithms, where
Random Vector Functional Link obtained, in general, the best predictive performance compared to online
sequential versions of extreme learning machines and single hidden layer neural network with random
weights.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Single layer feedforward neural networks (SLFNs) with random
weights, as random basis function approximators, have received
considerable attention in classification and regression problems
because of their universal approximation capability [1–3]. Special
features of these learner models come from weights specification,
that is, the input weights and biases are randomly assigned and the
output weights can be analytically evaluated by a Moore–Penrose
generalized inverse of the hidden output matrix.

Neural networks with random weights have many advantages
in comparison to other iterative methods of learning, such as back-
propagation (BP) [4] or support vector machine (SVM) [5]. The first
advantage is the computational time required to train the model,
being much lower in comparison to iterative methods. A second
advantage is that the user only needs to specify the number of
hidden neurons. Nevertheless, this parameter in many cases has

∗ Corresponding author at: Facultad de Ingeniería y Ciencias, Universidad Adolfo
Ibáñez, Av. Diagonal Las Torres 2640, Peñalolén, Santiago, Chile.

E-mail addresses: pabhenriquez@alumnos.uai.cl,
pablohenriquez8386@gmail.com (P.A. Henríquez), gonzalo.ruz@uai.cl (G.A. Ruz).

a significant impact on the performance of the model, therefore
a method to assist in the selection of the architecture of SLFNs is
desirable. Typically, the number of neurons in the hidden layer is
pre-determined by a trial-and-error approach [6]. It is known that
neural networks with a small hidden layer will not be capable of
generalizing the training data (underfitting); on the other hand, if
the network has a large number of hidden neurons, this can give
place to overfitting. Therefore, the number of hidden neurons plays
a crucial role in an appropriate training of SLFNs. To address this
issue, research work has focused primarily on determining the net-
work’s architecture within the learning algorithm. This approach
consists in the pruning of unnecessary neurons during the training
process [7,8].

In the last decades, several methods to determine the contribu-
tion of each input variable (attribute) have been proposed, such as
the PaD method [9], Perturb method [10], and the Profile method
[11]. In the literature there are many methods for the assessment
of the relative importance of the independent variables. Garson
developed an algorithm based on the connection weights of a neu-
ral network in order to determine the relative importance of each
input variable [12]. This same idea was modified and applied by
Goh [13].

https://doi.org/10.1016/j.asoc.2018.03.013
1568-4946/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2018.03.013
https://doi.org/10.1016/j.asoc.2018.03.013
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:pabhenriquez@alumnos.uai.cl
mailto:pablohenriquez8386@gmail.com
mailto:gonzalo.ruz@uai.cl
https://doi.org/10.1016/j.asoc.2018.03.013

Please cite this article in press as: P.A. Henríquez, G.A. Ruz, A non-iterative method for pruning hidden neurons in neural networks with
random weights, Appl. Soft Comput. J. (2018), https://doi.org/10.1016/j.asoc.2018.03.013

ARTICLE IN PRESSG Model
ASOC-4762; No. of Pages 13

2 P.A. Henríquez, G.A. Ruz / Applied Soft Computing xxx (2018) xxx–xxx

As mentioned, the above methods are concerned with the
importance of the input variables (for feature selection). Instead, we
consider in this work, the determination of the relative importance
of neurons in the hidden layer for pruning purposes. In particu-
lar, due to its non-iterative nature, simplicity, and effectiveness, as
shown in [14–17], we adapt Garson’s algorithm for pruning hidden
nodes in neural networks with random weights.

The contributions of this paper are as follows:

• We propose a non-iterative method for pruning hidden neu-
rons for a single hidden layer neural network with random
weights (RWSLFN), Random Vector Functional Link Network
(RVFL), Extreme Learning Machines (ELM), and randomized neu-
ral networks in general.

• The proposed method is based on Garson’s algorithm, which is
commonly used for feature selection (input layer) in the context
of neural networks, but not for pruning hidden nodes.

• We evaluate and compare the performance and training time
of the proposed method for regression and classification prob-
lems, considering iterative and non-iterative methods in neural
networks with random weights.

The paper is organized as follows. Section 2 presents non-
iterative learning algorithms for neural networks with random
weights. The proposed method called Garson-pruned (GP) is intro-
duced in Section 3. Section 4 describes our experimental setup and
procedures. In Section 5, we compare the performance using differ-
ent thresholds. The results in regression and classification problems
using the proposed method and comparisons with other algorithms
is presented in Section 6. Section 7 describes the proposed method
applied to sequential algorithms. And finally, in Section 8, we draw
the main conclusions from our work.

2. Non-iterative learning algorithms for neural networks
with random weights

In the literature, there are many kinds of randomization of the
inner weights for feedforward neural networks. A schematic dia-
gram of an SLFN with random weights is shown in Fig. 1. In 1992, for
instance, Schmidt et al. [18] proposed a single hidden layer neural
network with random weights (RWSLFN) assignments between the
input and hidden layers and least-square estimation on the output
weights as the training method. In 1994, Pao et al. [19] proposed a
functional link neural network named Random Vector Functional
Link Network (RVFL). In 1996, Chen et al. [20] found the maxi-
mum number of hidden nodes to be N − r − 1 for RVFL network
with a constant bias to learn a mapping within a given precision
based on an n-dimensional N-pattern dataset, where r is the rank
of the dataset. Furthermore, a robust weighted least-square method
is proposed in order to eliminate outliers. In 1998, Broomhead
et al. [21] studied the implicit assumptions made when employ-
ing a feedforward layered network model to analyze complex data.
The use of radial basis function networks (RBF) is considered by
Lowe [22] and Park et al. [23]. In particular, this latter work offers
a proof that RBF networks with one hidden layer are capable of
universal approximation. Hornik [24] investigated the approxima-
tion ability of standard multilayer feedforward networks with as
few as one hidden layer. As shown by Hornik, when the activation
function is bounded and nonconstant, the standard multilayer feed-
forward networks are universal approximators. Recently, Zhang
and Suganthan [25] conducted a survey on randomized algorithms
for training neural networks. Among the different machine learning
techniques, a modified version of RWSLFN called extreme learning
machine (ELM), proposed by Huang et al. [26] in 2004, has gained
attention in the past few years [27].

Fig. 1. Schematic diagram of an SLFN with random weights. Dashed red arrows rep-
resent direct connections between input and output neurons. Dashed blue arrows
show the bias in the output node. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)

The main procedure in non-iterative learning algorithms con-
sists in randomly fixing parameters in the model’s configurations,
rather than tuning them via a time-consuming iterative process
(such as BP [4] or SVM [5]).

Consider a training set containing N arbitrary distinct samples
{(xi, oi)}Ni=1, where xi = [xi1, xi2, . . ., xin]T ∈ Rn and oi = [oi1, oi2, . . .,
oim]T ∈ Rm, with h hidden layer nodes and the activation function
g(x). In general, a non-iterative algorithm can be defined as

ôi =
h∑
j=1

ˇjg(wj · xi + bj) + b +
h+n∑
j=h+1

ˇj · xi, i = 1, . . ., N, (1)

where wj = [wj1, wj2, . . ., wjn]T is the weight vector connecting the
jth hidden node with the input nodes. ˇj = [ˇj1, ˇj2, . . ., ˇjm]T is
the weight vector connecting the jth hidden node with the output
nodes; bj is the threshold of the jth hidden node; h represents the
number of hidden neurons; b is a bias vector of length m in the
output neurons.

Eq. (1) can be written compactly as

H ̌ = Ô, (2)

where H is the hidden layer output matrix of the neural network,
computed as follows:

H(wj, bj, xi) =

⎡
⎢⎣
g(w1 · x1 + b1) · · · g(wh · x1 + bh) b xT1

.

.

.
.
.
.

.

.

.
.
.
.

g(w1 · xN + b1) · · · g(wh · xN + bh) b xT
N

⎤
⎥⎦
N×(h+1+n)

, (3)

 ̌ =

⎡
⎢⎢⎣
ˇ11 · · · ˇ1m

...
. . .

...

ˇ(h+1+n)1 · · · ˇ(h+1+n)m

⎤
⎥⎥⎦

(h+1+n)×m

, (4)

https://doi.org/10.1016/j.asoc.2018.03.013

Download English Version:

https://daneshyari.com/en/article/11002725

Download Persian Version:

https://daneshyari.com/article/11002725

Daneshyari.com

https://daneshyari.com/en/article/11002725
https://daneshyari.com/article/11002725
https://daneshyari.com

