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a b s t r a c t 

Benefiting from improvement of accuracy in modeling complex geometry and integrity of discretization and sim- 

ulation, the isogeometric analysis in the boundary element method (IGABEM) has now been implemented by 

several groups. However, the difficulty of evaluating the nearly singular integral in IGABEM for elasticity has 

not yet been effectively solved, which will hinder the application of IGABEM in engineering structure analysis. 

Herein, the nearly singular integrals in IGABEM are separated to the non-singular part and singular part by the 

subtraction technique. The integral kernels in singular part are approximated by the Taylor series polynomial ex- 

pressions, in which different orders of derivatives are interpolated by the non-uniform rational B-splines (NURBS). 

Furthermore, the analytical formulations for the singular part with the approximated kernels are derived by a 

series of integration by parts, while the non-singular part is calculated with Gaussian quadrature. In this way, a 

semi-analytical method is proposed for the nearly singular integrals in the IGABEM. Comparing with the conven- 

tional IGABEM, the present method can yield accurate displacement and stress for inner points much closer to 

the boundary. It can obtain effective results with fewer elements than the finite element method because of the 

precise simulation of geometry and boundary-only discretization. 

1. Introduction 

It is known that the numerical method, such as the finite element 
method (FEM), can be very expensive in the discretization when it 
is used to simulate complex geometries. The isogeometric analysis pi- 
oneered by Hughes [1] and further developed by Cottrell [2,3] and 
Bazilevs [4,5] can overcome this disadvantage since this method bridges 
computer aided design (CAD) and computer aided engineering (CAE). 

The boundary element method (BEM) is another efficient numeri- 
cal tool, in which only the structure boundary needs to be discretized. 
The isogeometric analysis has also boosted the development of IGABEM, 
which can describe complex geometry more accurately than the tradi- 
tional BEM. The potential problem [6] , elasticity problem [7,8] , acoustic 
problem [9] and fracture mechanics problem [10,11] have been stud- 
ied by using the IGABEM with B-spline elements, NURBS elements and 
T-spline elements. 

In the conventional BEM, it is known that the nearly singular 
integrals always hinder the accuracy of the numerical results, especially 
when one calculates the physical quantities of the points which are 
very close to the actual boundary. That is because for the simulation of 
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the near-boundary points, the Gaussian quadrature used to obtain the 
integrals consisting of higher order singularities is no longer efficient. 
To deal with the nearly singular integrals, the researchers have applied 
different kinds of methods, which can be categorized to the numerical 
method and analytical method. One of the numerical methods is called 
the indirect numerical methods which establish new regularized bound- 
ary integral equations to avoid calculating the nearly singular integrals 
[12-15] . For instance, in an object-oriented programing environment 
INSANE [16] , Anacleto et al. [17] presented a self-regular formulation 
of the elasticity BEM. The other numerical methods are called the 
direct numerical methods which have been applied to calculate the 
nearly singular integrals efficiently, such as the interval subdivision 
method [18,19] , special Gaussian quadrature method [20] , polynomial 
transformation method [21,22] , distance transformation method, 
sigmoidal, sinh and exponential transformation methods [23-27] . It is 
noteworthy that some of the mentioned transformation methods need 
to employ the distance transformation technique [28] to expand the 
distance between the source and quadrature points in Taylor series, 
while this approach is sensitive to the position of the projection point. 
Therefore, regardless of the projection point location, a new distance 
transformation technique [29] is implemented. Coupled with the expo- 
nential transformation technique, Xie et al. [30] calculated the nearly 
singular integrals in the elasticity problems. Apart from these numerical 
methods, the researchers have also deduced the semi-analytical and 
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analytical formulations for nearly singular integrals, which can not only 
obtain accurate results, but also can further reduce the computational 
cost by using less Gaussian quadrature points. For example, by utilizing 
piecewise linear test and interpolation functions over flat triangles, 
Fata [31] developed a semi-analytical treatment for the nearly weakly 
singular surface integrals in the Galerkin boundary integral equations. 
By using the integration by parts, Niu, et al. [32,33] proposed a 
semi-analytical and analytical algorithm for the nearly strong and 
hyper-singular integrals with linear elements. Recently, Niu et al. 
[34] have further developed the semi-analytical algorithm of nearly 
singular integrals in higher-order elements, which makes the simulation 
for complex geometry more accurate. 

All the mentioned techniques above were developed to track the 
nearly singular integrals in conventional boundary element method. To 
the best of authors’ knowledge, except the exponential transformation 
[35] and sinh transformation [36] have been respectively applied for 
the nearly singular integrals of IGABEM in the potential problem and 
acoustic problem, very few methods are developed to address the nearly 
singular integrals in an analytical or semi-analytical way. Herein, by ap- 
proximating the kernels of nearly singular integrals with Taylor series 
and using a series of integration by parts, a semi-analytical algorithm 

for elasticity IGABEM is proposed. 

2. Non-uniform rational B-splines 

The non-uniform rational B-splines are implemented in the IGABEM. 
First, a short introduction for the B-spline and NURBS is given for com- 
pleteness. 

2.1. Knot vector and basis functions of B-spline 

The B-spline basis functions, which are the fundamental of non- 
uniform rational B-splines, are firstly introduced in this section. Let’s 
define a non-decreasing sequence of parameter values Ξ= [ 𝜉1 , 𝜉2 , ⋅⋅⋅, 
𝜉n + p + 1 ]( 𝜉i ≤ 𝜉i + 1 , i = 1, ⋅⋅⋅, n + p ) as a knot vector which denotes the 
parametric space of the geometry, where 𝜉i is known as knot and p de- 
notes the degree. Once the knot vector Ξ is given, the basis functions for 
the B-spline can be defined in the following recursive way, 

𝑁 𝑖, 0 ( 𝜉) = 

{ 

1 if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖 +1 
0 otherwise for 𝑝 = 0 (1) 

𝑁 𝑖,𝑝 ( 𝜉) = 

𝜉 − 𝜉𝑖 

𝜉𝑖 + 𝑝 − 𝜉𝑖 

𝑁 𝑖,𝑝 −1 ( 𝜉) + 

𝜉𝑖 + 𝑝 +1 − 𝜉

𝜉𝑖 + 𝑝 +1 − 𝜉𝑖 +1 
𝑁 𝑖 +1 ,𝑝 − 1 ( 𝜉) for 𝑝 = 1 , 2 , 3 , ⋯ 

(2) 

The basis functions shown in Eqs. (1) and (2) when p = 0 and p = 1 
are exactly the same with the constant and linear basis functions inter- 
polated in Lagrange elements. Herein, the basis functions with p ≥ 2 are 
emphasized in the isogeometric analysis. For example, Fig. 1 illustrates 
the quadratic B-spline basis functions obtained from Eq. (2) with the 
given knot vector Ξ= [0, 0, 0, 1, 2, 2, 2]. 

After the basis functions being calculated, the B-spline can be inter- 
polated with all the control points P i in the following way, 

𝑪 ( 𝜉) = 

𝑛 ∑
𝑖 =1 

𝑁 𝑖,𝑝 ( 𝜉) 𝑷 𝑖 (3) 

where n denotes the number of control points. 

2.2. Basis functions and derivatives of NURBS 

Because of the introduction of weighting for each control point P i , 
the NURBS can reproduce complex curve and surface more precisely. 

Fig. 1. Quadratic B-spline basis functions with knot vector Ξ= [0, 0, 0, 1, 2, 2, 

2]. 

Similarly to the interpolation of B-spline, the NURBS curve can be in- 
terpolated by the following formulation, 

𝑪 ( 𝜉) = 

𝑛 ∑
𝑖 =1 

𝑅 𝑖,𝑝 ( 𝜉) 𝑷 𝑖 (4) 

where R i,p ( 𝜉) is the NURBS basis function, which is defined as, 

𝑅 𝑖,𝑝 ( 𝜉) = 

𝑁 𝑖,𝑝 ( 𝜉) 𝜔 𝑖 ∑𝑛 

𝑗=1 𝑁 𝑗,𝑝 ( 𝜉) 𝜔 𝑗 

(5) 

In Eq. (5) , N i,p ( 𝜉) and N j,p ( 𝜉) are the B-spline basis functions defined 
in Eq. (2) . It can be concluded that when all the weightings 𝜔 are set to 
unity, the basis functions shown in Eq. (5) will be degenerated to the 
B-spline basis functions. Therefore, the B-spline can be considered as 
sub-set of NURBS. The first derivative of NURBS is defined as follows, 

d 
d 𝜉

𝑅 𝑖,𝑝 ( 𝜉) = 𝜔 𝑖 

𝑊 ( 𝜉) 𝑁 

′
𝑖,𝑝 
( 𝜉) − 𝑊 

′( 𝜉) 𝑁 𝑖,𝑝 ( 𝜉) 

𝑊 

2 ( 𝜉) 
(6) 

where 𝑁 

′
𝑖,𝑝 
( 𝜉) = d 𝑁 𝑖,𝑝 ( 𝜉)∕d 𝜉, 𝑊 

′( 𝜉) = 

∑𝑛 

𝑗=1 𝑁 

′
𝑗,𝑝 ( 𝜉) 𝜔 𝑗 . And the higher- 

order derivatives of Eq. (5) can be expressed in terms of lower-order 
derivatives in a recursive formulation as 

d 𝑘 

d 𝜉𝑘 
𝑅 𝑖,𝑝 ( 𝜉) = 

𝐴 

( 𝑘 ) 
𝑖 
( 𝜉) − 

∑𝑘 

𝑏 =1 

( 

𝑘 

𝑏 

) 

𝑊 

( 𝑏 ) ( 𝜉) d 
( 𝑘 − 𝑏 ) 

d 𝜉( 𝑘 − 𝑏 ) 𝑅 𝑖,𝑝 ( 𝜉) 

𝑊 ( 𝜉) 
(7) 

where the binomial coefficients ( 𝑘 
𝑏 
) is defined as 𝑘 ! 

𝑏 !( 𝑘 − 𝑏 )! and 𝐴 

( 𝑘 ) 
𝑖 
( 𝜉) = 

𝜔 𝑖 
d 𝑘 
d 𝜉𝑘 

𝑁 𝑖,𝑝 ( 𝜉) . Let’s take a quadratic NURBS, whose knot vector is Ξ= [0, 

0, 0, 1, 2, 2, 2] and the weighting is [1, 1, 3, 1], as an example. Its basis 
functions are illustrated in Fig. 2 and the first two order derivatives are 
shown in Fig. 3 . 

3. Isogeometric elasticity boundary element method 

The isogeometric analysis for 2D elasticity boundary integral equa- 
tion in the domain Ω enclosed by the boundary Γ is considered in this 
section. 

The displacements u i ( y ) and stresses 𝜎ik ( y ) at interior point y in the 
domain Ω can be respectively calculated by the following integral equa- 
tions, 

𝑢 𝑖 ( 𝒚 ) = ∫Γ
[
𝑈 

∗ 
ij 
( 𝑥, 𝑦 ) 𝑡 𝑗 ( 𝒙 ) − 𝑇 ∗ 

ij 
( 𝑥, 𝑦 ) 𝑢 𝑗 ( 𝒙 ) 

]
dΓ( 𝒙 ) + ∫Ω 𝑈 

∗ 
ij 
( 𝑥, 𝑦 ) 𝑏 𝑗 ( 𝒙 ) dΩ (8) 
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