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Flows in which the primary features of interest do not rely on high-frequency acoustic 
effects, but in which long-wavelength acoustics play a nontrivial role, present a compu-
tational challenge. Integrating the entire domain with low-Mach-number methods would 
remove all acoustic wave propagation, while integrating the entire domain with the fully 
compressible equations can in some cases be prohibitively expensive due to the CFL time 
step constraint. For example, simulation of thermoacoustic instabilities might require fine 
resolution of the fluid/chemistry interaction but not require fine resolution of acoustic ef-
fects, yet one does not want to neglect the long-wavelength wave propagation and its 
interaction with the larger domain.
The present paper introduces a new multi-level hybrid algorithm to address these types 
of phenomena. In this new approach, the fully compressible Euler equations are solved on 
the entire domain, potentially with local refinement, while their low-Mach-number coun-
terparts are solved on subregions of the domain with higher spatial resolution. The finest of 
the compressible levels communicates inhomogeneous divergence constraints to the coars-
est of the low-Mach-number levels, allowing the low-Mach-number levels to retain the 
long-wavelength acoustics. The performance of the hybrid method is shown for a series of 
test cases, including results from a simulation of the aeroacoustic propagation generated 
from a Kelvin–Helmholtz instability in low-Mach-number mixing layers. It is demonstrated 
that compared to a purely compressible approach, the hybrid method allows time-steps 
two orders of magnitude larger at the finest level, leading to an overall reduction of the 
computational time by a factor of 8.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Many interesting fluid phenomena occur in a regime in which the fluid velocity is much less than the speed of sound. 
Indeed, it is possible to make a distinction between scales of fluctuations, depending on how a hydrodynamic fluid element 
is sensitive to acoustic perturbations. Acoustic waves that do not carry enough energy to perturb a flow are referred to 
short-wavelengths. In contrary, long-wavelengths refer to large scale motions where acoustic and hydrodynamic fluctuations 
can interact. Low-Mach-number [1–3] schemes exploit the separation of scales between acoustic and advective motions; 
these methods calculate the convective flow field but do not allow explicit propagation of acoustic waves. Their compu-
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tational efficiency relative to explicit compressible schemes results from the fact that the time step depends on the fluid 
velocity rather than sound speed. However, there is a class of problems for which the small-scale motions can be adequately 
captured with a low-Mach-number approach, but which require in addition the representation of long wavelength acoustic 
waves. This paper introduces a computational methodology for accurately and efficiently calculating these flows.

An important example of this type of flow is thermoacoustic instabilities in large scale gas turbine engines. In these 
engines the region where the burning takes place can be modeled using a low-Mach-number approach, since the short-
wavelength acoustic waves generated by the heat release do not carry sufficient information or energy to be of interest. 
Low-Mach-number modeling of turbulent combustion has been demonstrated to be an efficient way to generate accurate 
solutions [4–9]. However, in large burners, under certain conditions the long-wavelength acoustic waves that emanate from 
the burning region can reflect from the walls of the burner and impinge on the burning region, generating thermoacoustic 
instabilities which can be violent enough to disrupt the flame, as well as lead to mechanical failures or excessive acoustic 
noise [10–15]. There is currently a great deal of interest in the problem of how to control the instabilities through passive 
or active control mechanisms [16].

This scenario could clearly be modeled using the fully compressible reacting flow equations, but the sound speed is high 
and the burners are large, and performing such a simulation at the resolution required for detailed characterization of the 
flame is computationally infeasible. Thus the goal of the work here is to construct a methodology in which the time scale at 
which the equations are evolved is that of the fluid velocity rather than the sound speed, but which can explicitly propagate 
the long-wavelength acoustic waves as they travel away from the flame and as they return and interact with the flame that 
created them.

This paper is the first of a series of papers describing the development of this methodology. For the purposes of this 
paper, one of the simplest low-Mach-number equation sets is considered, i.e. the variable density incompressible Euler 
equations. These equations allow different regions of the flow to have different densities, but do not allow any volumetric 
changes to occur (i.e. the material derivative of the density is zero). A hybrid approach is constructed in which variants of 
both the low-Mach-number equations and the fully compressible equations are solved in each time step; the computational 
efficiency of this approach results from the fact that the compressible equations are solved at a coarser resolution than 
the low-Mach-number equations. As a result, only long wavelength acoustic waves are resolved, yet the fine scale locally 
incompressible structure can still be resolved on the finer level(s).

The method is similar to the Multiple Pressure Variables (MPV) first introduced in a set of papers by Munz et al. [17–20]. 
The essence of the MPV approach is to decompose the pressure into three terms: the thermodynamic pressure p0; the 
acoustic pressure p1; and the perturbational pressure p2. The acoustic signal is carried by p1, and p2 is used to satisfy 
the divergence constraint on the low-Mach-number levels and is defined as the solution to a Poisson equation. Different 
approaches for solving p1 were proposed in the aforementioned references, for example by solving a set of Linearized Euler 
Equations (LEEs) on a grid that is a factor of 1/M coarser, where M is a measure of the Mach number of the flow. Differently, 
Peet and Lele [21] developed a hybrid method in which the exchange of information between the fully compressible and 
low-Mach-number regions occurs through the boundary conditions of overlapping meshes. The novelty of the present paper 
is that the fully compressible equations are solved without any approximation, and that an adaptive mesh refinement 
(AMR) framework is employed to optimize the performance of the algorithm. Thus, while the fully compressible equations 
are solved in the entire domain, with possible additional local refinement, the hybrid strategy developed in the present 
paper allows refined patches where the low-Mach-number equations are solved at finer resolution.

Note that there have been a number of other approaches to bridging the gap between fully compressible and low-Mach-
number approaches. One alternative to the MPV methodology are the so-called unified, all-speed, all-Mach or Mach-uniform
approaches [22–25], which consist of a single equation set that is valid from low to high Mach numbers. These methods 
retain the full compressible equation set, but numerically separate terms which represent convection at the fluid speed from 
acoustic effects traveling at the sound speed. Inherent in these approaches is that at least some part of the acoustic signal 
is solved for implicitly, which makes them inapplicable for our applications of interest in which explicit propagation of the 
long wavelength acoustic modes is preferred.

Note also that all of the methods described above involve feedback from the compressible solution to the low-Mach-
number solution, and the reverse, thus they fundamentally differ from many hybrid methods employed in the aeroacoustics 
community, in which the acoustic calculation does not feed back into the low-Mach-number solution. Methods such as Ex-
pansion about Incompressible Flow (EIF) [26] can be used to calculate acoustic waves via Lighthill’s analogy approach given 
an existing incompressible solution. A review of aeroacoustic methods is beyond the scope of this paper, but a compari-
son of EIF, MPV and LEEs is given in Roller et al. [27]. More recently, many groups [28–31] have investigated the coupling 
between a low-Mach-number detailed simulation of noise sources from a small scale turbulent flow, and the aeroacoustic 
propagation within a larger domain with the LEEs. It will be shown in the results section that the novel hybrid method 
developed in the present paper is able to tackle the same kind of problem while solving the purely compressible equations 
instead of the LEEs and allowing feedback of the acoustics into the low-Mach-number solution.

The remainder of this paper is organized as follows. In Section 2 the hybrid hierarchical grid strategy and governing 
equations that are solved at each resolution are presented. Then, in Section 3 the time advancement algorithm is detailed, 
as well as the procedures for interpolation and exchange of the variables between the different sets of equations at different 
levels. Finally, Section 4 contains the numerical results of the canonical test cases employed to assess the spatial and 
temporal rates of convergence of the hybrid method, as well as the simulation of the propagation of aeroacoustic waves 
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