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A B S T R A C T

Automatic face landmarking has received a lot of attention in the past decades. It is now mature enough to be
implemented in fully autonomous video systems. As cascade-of-regression based algorithms have become state
of the art in such systems, two major (and still relevant) sources of interest have slowly faded away: the need for
semantic-driven learning beyond ground truth annotation, and full video chain performance i.e. tracking effi-
ciency, which in the case of said methods strongly relates to their robustness towards shape initialization before
fitting. In this paper, we investigate how data sampling using face priors can affect their performance in terms of
convergence and robustness. We propose new strategies based on said priors to overcome inconsistencies ob-
served during cascade-of-regression learning on purely random sampling-based stages. We will show that simple
choices can be easily integrated within regression-based face tracking systems to increase accuracy and ro-
bustness.

1. Introduction

Face tracking or face landmarking is an active topic and also a key
tool for image and video analysis: authentification, emotion detection or
face transfer are some of the applications relying on face landmarking.

As of today, cascade-of-regression is still one of the most popular
methods employed for face landmarking when low computational re-
sources are required [1–3]. While deep architectures with convolution
structure (i.e. Convolutional Neural Networks) have been found highly
effective for this task very recently [4–6], their strong reliance on
parallel computation efficiency and intensive use of Graphics Proces-
sing Unit (GPU) ressources prevent them from being used on low-cost,
low-power embedded systems. It is important to stress out that our most
of our research work on face analysis is indeed aimed at such systems.

Like deep neural networks, cascade-of-regression algorithms rely on
supervised learning: starting from a learning database, a regression
model is built then used later for face fitting. The database may not be
exhaustive, thus it requires an extra step called data augmentation to
increase variation of the input. To our concern, authors do not explore
sampling strategies and tend to rely on blind uniform sampling, leading
to good fitting performance on a single, pre-initialized frame basis but
to very poor full video chain processing choices. Indeed, cascade-of-
regression alignment has the well-known drawback that it is essentially
aimed at static images by design and rely on accurate initializations

from potentially computationally expensive face detectors [7]. Beyond
face detection performance, the influence of inaccurate shape in-
itialization is rarely investigated, at least using realistic scenarios and
not just easily removable zero-centered Gaussian noise, leading to ei-
ther tedious frame-by-frame detection tasks or unstable bounding box
tracking strategies.

The model used in cascaded face landmarking is a tree built with a
random process. Nodes of the tree are created upon a set of features,
which is inherently a limited set. As a result, a sampling scheme should
again be employed to define this set. Like data augmentation, authors
only rely on uniform sampling and the resulting trained models may not
be optimal, with final step decisions leading to regression directions
cancelling one another out, as we will illustrate later on.

Our contributions in this paper concern the study of sampling
strategies used during two steps of the regression learning scheme: data
augmentation and feature sampling. For both steps, we investigate
several sampling methods found in literature as well as new proposi-
tions and investigate their impact on face fitting quality. Readers should
keep in mind that while our field of investigation is primarily cascade-
of-regression alignment, most other methods can or already benefit
from such sampling strategies. In details, we propose:

1. Four sampling schemes for data augmentation, taking into account
common knowledge about face geometry and dynamics;
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2. Two sampling schemes for features generation, with two opposite
directions: better space coverage and landmark importance;

3. An analysis of semantic-driven sampling strategies compared to
conventional blind sampling.

The paper is structured as follows. Section 2 discusses previous work
on feature sampling and data augmentation for face landmarking.
Section 3 presents regression-based methods. In Section 4 we expose
various sampling schemes for building augmented sets of groundtruth
shapes. Section 5 details sampling schemes for building feature sets. In
Section 6 we study the results of each sampling scheme in the context of
face landmarking, and set a performance benchmark of our algorithm
using a challenging faces-in-the-wild dataset, namely the 300W com-
petition test-set [8,9]. Finally Section 7 concludes the paper.

2. Related work

In this section we only reference papers that are fundamental to
understand our work. A full survey of face landmarking is beyond the
scope of this paper. Readers can refer to recent surveys such as [10] or
[11] for a detailed overview.

2.1. Face alignment

Historically, authors categorize face landmarking into three main
methods: Active Shape and Active Appearance Models (ASM/AAM)
[12,13], Constrained Local Models (CLM) [14] and regression models
[15]. AAM conjointly learn global texture and shape models, with face
fitting consisting in minimizing the difference between a target face
image and a deformable parametric texture model. Unfortunately, the
idea of a global texture model is a major issue since it tends to drive the
fitting process as a whole, turning common occurrences such as oc-
clusion or light changes into a threat to result quality. To increase ro-
bustness against occlusions, CLM methods employ a local texture model
around each landmark. While some CLM implementations allow in-
teractive frame rate [16], they are usually computationally expensive
and require high-performance hardware.

Regression-based methods have been claimed to enable both high-
performance and high-robustness in face landmarking, even on limited
hardware such as smart devices. Dollar et al. [15] introduce the cas-
caded pose regression method, where a shape is progressively refined to
a target shape. Cao et al. [1] enhance regression using a new shape
indexation scheme and a boosted two-level cascade of regression. Ka-
zemi et al. [2] provide a high-performance regression system with a
simplified initialization stage and gradient boosted cascade building. At
the same time, Ren et al. [3] announce three times speed-up using
customized local binary features. While impressive performances are
reported, almost every method suffers from the same issues. Yang et al.
[17] show that such methods are highly sensitive to prior face detection
performance, said detection being a mandatory step for initialization.
As a result, despite solution proposals such as combined detection/re-
gression [18], the issue of robustness towards initialization is still
considered an open issue.

2.2. About deep architectures

Very recently, deep neural networks have been applied to face
alignment, either for 2D landmarking [5,19] or 3D landmarking [4,6].
Such methods rely on training cascades of Convolutional Neural Net-
works (CNNs) to compute features around landmarks using all pixels of
the images as input. While these methods have shown impressive re-
sults regarding fitting precision, especially in videos [20], they all rely
on a computationally intensive process that is often incompatible with
real-time fitting or even just computation on low-resource, low-power
embedded hardware. Resource and time–cost effectiveness is con-
sidered a rationale for cascades of regression, as defended by Kazemi

et al.’s 1000fps [2] or Ren et al.’s 3000fps [3] experiments. In [5]
Trigeorgis et al. criticize the fact that the binary/tree-based features
commonly used in cascade-of-regression methods, being just simple
pixel intensity differences, cannot be learnt in an end-to-end manner
like, as opposed to convolutional features. While the above remark is
reliable and well illustrated by the authors, the use of (well-named)
weak learners such as random ferns [1,21] or random forests [2,3]
within a boosting framework is precisely the reason why such methods
require so little computational ressources, as opposed to convolutional
masks. Indeed, we consider our introduction of face priors in a data-
driven manner during the sampling phase (importance sampling) as a
step towards semantic training which echoes Trigeorgis et al./Mne-
monic Descent Method (MDM)’s natural learning of head pose parti-
tions [5] or Cao’s coarse-to-fine hierarchy obtained with shape-con-
strained regression [1]. Comparative results between our algorithm and
current state-of-art face landmarking methods (including MDM) will be
provided in Section 6 to demonstrate its relevance in terms of precision
and computational costs. Moreover, we will provide an in-depth ana-
lysis of regression behaviour between random sampling and importance
sampling, illustrated by Figs. 16 and 17, showing how importance
sampling can prevent regression directions from cancelling one another
out despite the fact that regressors are learnt independently, which was
another source of criticism pointed by Trigeorgis et al.

2.3. Features sampling

Most studies on features used in face landmarking have been done
with robustness against face transformations in mind (mainly rotation
and perspective transformation). Cao et al. [1] use shape-indexation,
Burgos et al. [21] introduce interpolated shape features, which is later
enhanced by Cao [22] using barycentric coordinates. Unfortunately,
feature pool selection has not been well investigated. Dollar et al. [15],
use uniform sampling; reference methods [1,21,2,3] are based on
Dollar’s work thus use the same sampling strategy. To our concern, the
only reference method that employs another method is the work of Cao
et al. [22] where a Gaussian distribution over the unit square is used,
although no specific justification or comparison with uniform sampling
is provided by the authors. Kazemi et al. [2] observed that feature se-
lection using distance priors leads to better fitting performance but
feature generation is still based on uniform sampling.

2.4. Data augmentation sampling

Some authors have studied the impact of data augmentation on
classification performance [23]. As an example, Krizhevsky et al. [24]
perform Principal Component Analysis (PCA) on Red-Green–Blue (RGB)
pixel values in a deep learning architecture to achieve the best results
(at the time of publication) on the famous ImageNet classification
challenge. De Vries et al. [25] also used data space to perform data
augmentation. To our knowledge, such complex data-space augmen-
tation methods have not been applied to regression-based face land-
marking, and only blind, uniform selection of shapes is used during data
augmentation. As an example, as PCA modelling has been criticized as
the cause of ASM/AAM/CLM’s failure to fit in-the-wild face shapes,
anything PCA-related has been seemingly discarded from cascade-of-
regression landmarking, including their use for data augmentation
documented in [13,26].

It is interesting to note that in the context of deep learning, where
the number of training samples is often much higher, some works
[27,28] have been conducted in the opposite direction: sampling the
training set to generate a smaller set that leads to the same fitting/
classification error. The main aim is to reduce computational training
cost.

In this paper, we propose new strategies for both data augmentation
and feature sampling, where face semantic integration is induced im-
plicitly by priors regarding data representation models and space
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