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a b s t r a c t 

Extensions to auto-context segmentation are proposed and applied to segmentation of multiple organs 

in porcine offal as a component of an envisaged system for post-mortem inspection at abbatoir. In com- 

mon with multi-part segmentation of many biological objects, challenges include variations in configura- 

tion, orientation, shape, and appearance, as well as inter-part occlusion and missing parts. Auto-context 

uses context information about inferred class labels and can be effective in such settings. Whereas auto- 

context uses a fixed prior atlas, we describe an adaptive atlas method better suited to represent the 

multimodal distribution of segmentation maps. We also design integral context features to enhance con- 

text representation. These methods are evaluated on a dataset captured at abbatoir and compared to a 

method based on conditional random fields. Results demonstrate the appropriateness of auto-context and 

the beneficial effects of the proposed extensions for this application. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Segmentation of non-rigid biological objects into their con- 

stituent parts presents various challenges. Here we address a seg- 

mentation task in which parts are organs in body images captured 

at abbatoir. This constitutes one stage in an envisaged on-site sys- 

tem for screening of pathologies; these are characteristically organ- 

specific. The spatial arrangement of organs in an image is only 

weakly constrained and their shape is variable. Furthermore their 

appearance changes due to factors including cause of pathology, 

surface contaminants, and specular reflections. There can be lim- 

ited control over orientation, severe occlusions between parts, and 

parts may be missing altogether. In this paper we describe adapta- 

tions to the auto-context (AC) segmentation algorithm to address 

such a task. We apply these to segment heart, lungs, diaphragm 

and liver in porcine offal. The groups of inter-connected organs are 

called plucks , examples of which are shown in Figs. 2 and 3 . 

Auto-context [3] is an iterative technique that combines contex- 

tual classification information with local image features. AC is rela- 

tively flexible and easy to implement, and has been applied to var- 
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ious biomedical imaging problems [3,4] . The context features used 

by AC to inform class label inference at a pixel location are poste- 

rior class probabilities produced by the previous iteration. These 

probabilty values are typically sampled at a fixed set of locations 

relative to the pixel in question. Additionally we design integral 

context features obtained by summing probability values over sets 

of locations. In the application considered here we argue that sums 

over rows and sums over the entire foreground are appropriate. 

One attractive feature of AC is that a prior atlas can be used as a 

source of contextual data for the initial iteration. Such an atlas can 

be obtained by averaging rigidly registered manual segmentation 

maps. However, a single averaged map does not provide a good 

representation of the multi-modal map distribution that arises as 

a result of the variations mentioned above, such as occlusions and 

missing parts. We describe weighted atlas auto-context (WAAC), a 

method that adapts an atlas representation to be relevant to the 

current image. This improved atlas is used at the next iteration as 

an additional source of information together with the label proba- 

bility maps. 

In this paper we combine integrated context and WAAC into 

one system, extending work reported in conference papers on in- 

tegral context [1] and WAAC [2] . We report a direct comparison of 

all of these methods applied to segmentation of multiple organs 

in pig offal, and we also compare with a conditional random field 
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(CRF) method. We evaluate performance in terms of Dice coeffi- 

cient distributions, pixel-wise classification and quadratic scores. 

2. Background 

Post-mortem inspection is an important means of ensuring the 

safety and quality of meat products, enabling the detection of pub- 

lic health hazards and pathologies, and providing useful feedback 

to farmers. There are moves towards visual-only inspection of pig 

carcasses and offal without palpation, in order to minimise risk of 

cross contamination [5,6] . This along with the potential to detect a 

greater number of pathologies with improved reproducibility than 

currently possible with manual inspection [7] motivates develop- 

ment of automated visual inspection. Reliable segmentation of or- 

gans would constitute an important step towards this goal. In this 

context even modest improvements in organ segmentation could 

be significant as regions assigned to the wrong organ may ulti- 

mately lead to missed or falsely detected pathologies. 

Applications to meat production deal mostly with estimation 

of proportions of muscle, fat and bone either in vivo and post- 

mortem, sometimes involving segmentation of organs without dis- 

tinguishing them individually [8,9] . Tao et al. [10] segmented 

poultry spleen from surrounding viscera as an aid to detection 

of splenomegaly. Jørgensen et al. [11] segmented gallbladders in 

chicken livers from images acquired at two visible wavelengths. 

Stommel et al. [12] envisaged a system for robotic sorting of ovine 

offal that would involve recognition of multiple organs. 

Most literature on segmentation of multiple organs deals with 

human abdominal organs in CT or MR imaging through techniques 

including level set optimisation [13] , statistical shape models [14] , 

and atlas-based methods [15,16] . 

Segmentation methods that incorporate spatial context infor- 

mation include those combining inference algorithms based on 

belief propagation (BP) [17] with models like conditional random 

fields (CRFs) [18] . Disadvantages common to many such techniques 

that aim to capture context information include their reliance on 

fixed spatial configurations with confined neighbourhood relations 

and complex training procedures. 

There is extensive literature dealing with the construction of 

unbiased atlases for multi-modal data, especially in brain magnetic 

resonance (MR) image analysis, as in the work of Blezek and Miller 

[19] and Zikic et al. [20] . Some related work makes use of AC. Kim 

et al. [21] , for example, employed an approach similar to that of 

Zikic et al. [20] , training multiple models, each based on an indi- 

vidual annotated image, so that the probability map of a new im- 

age was obtained by averaging maps predicted by individual mod- 

els. Zhang et al. [22] proposed a hierarchy of AC models whose 

bottom level is similar to the set of models used by Zikic et al. 

[20] and Kim et al. [21] . Given a new image, only the best models 

in the hierarchy are selected to contribute to the final probability 

map. Model training via these techniques can be computationally 

expensive. 

3. Methods 

3.1. Auto-context (AC) 

We perform segmentation using methods built around the 

auto-context (AC) algorithm of Tu and Bai [3] . AC learns to map 

an input image to a multi-class segmentation map consisting of 

posterior probabilities over class labels. It iteratively refines the 

segmentation map by using the label probabilities in a given it- 

eration as a source of contextual data for the following iteration. 

Label probabilities at a set of locations relative to the location to 

be classified are concatenated with local image features to form a 

combined feature vector for training the next classifier. 

Let S be a set of m training images X j together with their label 

maps Y j , i.e. S = { (Y j , X j ) , j = 1 ..m } . At each iteration t we want to 

train a classifier that outputs the probability distribution p (t) 
ji 

over 

labels y ji ∈ { 1 ..K} for pixel i in image X j , given the image patch 

X j ( N i ) from which local features are computed, and label proba- 

bility map P (t−1) 
j 

(i ) (see Eq. (1) ). 

p (t) 
ji 

= p(y ji | X j (N i ) , P 
(t−1) 
j 

(i )) (1) 

In X j ( N i ), N i denotes all pixels in the image patch, and P (t−1) 
j 

(i ) is 

map P (t−1) 
j 

output for image X j at the previous iteration t − 1 , but 

now centred on pixel i . 

AC produces a sequence of classifiers, one per iteration. Before 

the first iteration, all probability maps P (0) 
j 

can be initialised using 

a prior atlas Q 

(0) , obtained by averaging m training label maps: 

Q 

(0) = 

1 

m 

∑ 

j 

Y j . (2) 

At each iteration, given pixel i in image X j , the actual feature vec- 

tor input to the classifier is composed of local image features ex- 

tracted from patch X j ( N i ) concatenated with context features ex- 

tracted from the re-centered label probability map P (t−1) 
j 

(i ) . Con- 

text features are the probabilities extracted from selected locations 

on map P (t−1) 
j 

(i ) , including the central location that corresponds to 

the current image pixel i . Selected locations are typically defined 

by a sparse star-shaped “stencil”. 

In our implementation of AC, context probabilities for a location 

are extracted at 90 surrounding stencil points as well as at the lo- 

cation itself. At the first iteration, context consists of the 5 class 

label probabilities provided by the prior atlas at each of the 91 as- 

sociated context points; at subsequent iterations, it consists of the 

label probabilities output by the classifier at the previous iteration, 

at the same context points. This gives 91 × 5 = 455 context features 

per image point. We use multi-layer perceptron classifiers (MLPs); 

these can be trained to directly estimate posterior probability dis- 

tributions over the class labels. 

3.2. Integral context (IC) 

Context data can be enhanced by including integral features, i.e. 

sums of class label probabilities. We augment the context features 

described above with two types of integral context features suit- 

able for our application. 

The relative positions of organs along the vertical direction vary 

little from image to image, given that each pluck hangs from a 

hook and the part of the pluck that is attached to the hook is 

very consistent across plucks. Thus, given a point on an image, 

class probabilities averaged over the row to which the point be- 

longs provide the classifier on the next iteration with useful in- 

formation as to which organs are likely to occur at that particular 

height. For example, a row containing heart is likely to contain also 

lungs, but very unlikely to contain liver. 

In contrast, relative positions of organs along the horizontal di- 

rection vary considerably from image to image, given lack of con- 

trol over the orientation of the pluck around the vertical axis. The 

heart, in particular, is sometimes fully occluded. Nevertheless, or- 

gans are fairly consistent in volume from pig to pig. Thus, class 

probabilities averaged over the whole image reflect the proportions 

of the pluck covered by each visible organ, and provide the next 

classifier with useful information on which organs are likely to be 

visible and how visible they are. For example, a small proportion 

of visible diaphragm is consistent with a hidden heart and a large 

proportion of lung. 
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