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a b s t r a c t 

This paper deals with robust regression and subspace estimation and more precisely with the problem 

of minimizing a saturated loss function. In particular, we focus on computational complexity issues and 

show that an exact algorithm with polynomial time-complexity with respect to the number of data can 

be devised for robust regression and subspace estimation. This result is obtained by adopting a classifi- 

cation point of view and relating the problems to the search for a linear model that can approximate the 

maximal number of points with a given error. Approximate variants of the algorithms based on ramdom 

sampling are also discussed and experiments show that they offer an accuracy gain over the traditional 

RANSAC for a similar algorithmic simplicity. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Robust estimation is a classical problem raised by the presence 

of outliers in the data. Such outliers are points that do not coin- 

cide with the underlying data distribution being learned and that 

must be rejected in order to estimate an accurate model. A stan- 

dard approach, entering the statistical framework of redescend- 

ing M-estimators [13,14] , relies on the minimization of a saturated 

loss function. Indeed, this saturation ensures that outliers yield- 

ing gross errors have a very limited influence on the estimation as 

the gradient of the loss at these points is zero. However, saturated 

loss functions are inherently nonconvex and their minimization is 

a highly nontrivial task. For some applications, suboptimal solu- 

tions or other heuristics such as the RANdom SAmple Consensus 

(RANSAC) [6] can provide satisfactory models. Yet, robust estima- 

tion problems also appear for instance iteratively in a bounded- 

error framework for problems where the data is assumed to be 

generated by a collection of models with unknown assignments 

of the data points to the models, such as in switching linear re- 

gression [1,4,9,10] or subspace clustering [2,12,15] . In such appli- 

cations, the models are often estimated one by one while consid- 

ering the data assigned to other models as outliers. In this con- 

text, relying on suboptimal solutions can lead to highly unsatis- 

factory results with many misclassifications of data points. Robust 

methods based on convex relaxations [2,3,12] or iteratively hard- 
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thresholding [5] offer some guarantees but are only optimal under 

particular conditions on the data. 

Instead, in this paper, we aim at unconditional optimality and 

discuss the computational complexity of globally minimizing a sat- 

urated loss function for the robust estimation of linear models, let 

it be regression ones or subspaces. In particular, the paper focuses 

on the question of the existence of an algorithm with a polyno- 

mial time-complexity with respect to the number of data, N . To 

this end, we devise an algorithm by enumerating all classifications 

of the points into two categories: those for which saturation of 

the loss occurs and those for which it does not. This classification 

point of view is also motivated by the equivalent formulation of 

the problem as the maximization of the number of points approxi- 

mated by a linear model with a bounded error combined with the 

minimization of a standard (non-saturated) loss over these points 

only. Indeed, this leads to the distinction between points with er- 

ror less than and greater than a predefined threshold. Since there 

are 2 N binary classifications of N points, such a combinatorial ap- 

proach based on the enumeration of all of them yields an algo- 

rithm with exponential complexity in O(2 N ) . Yet, we adopt its 

classification viewpoint and show that the number of classifica- 

tions, and thus the complexity, can be reduced to a polynomial 

function of N . From this classification viewpoint, the minimization 

of a saturated squared loss for regression can be related to the 

least trimmed squares estimator [13] , for which exact algorithms 

with polynomial complexity wrt. N have been proposed in [7,11] . 

However, these are restricted to problems with a single variable 

(one-dimensional data) and work with a fixed number of inliers 

rather than an error threshold. 
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While a polynomial complexity appears convenient, the de- 

gree of the polynomials can limit the applicability of the exact al- 

gorithms. Therefore, we also briefly discuss approximate variants 

of the algorithms devised to leverage the computational load by 

avoiding the complete enumeration of the classifications through 

random sampling. 

Notation. We write vectors in lowercase bold letters and matrices 

in uppercase bold letters. We define sign( u ) as taking value +1 if 

and only if u ≥ 0 and −1 otherwise. sign 0 ( u ) is defined similarly 

except that sign 0 (0) = 0 . The indicator function 1 A is 1 when the 

Boolean expression A is true and 0 otherwise. 

Paper organization. Section 2 gives the precise formulations of the 

regression and subspace estimation problems we consider. Then, 

Section 3 shows how these can be solved in polynomial time with 

respect to N . Section 4 discusses the approximate variants of the 

algorithms and Section 5 provides a few numerical results. Finally, 

Section 6 gives concluding remarks. 

2. Problem formulation 

In general terms, in an estimation problem, one can fit a model 

to the data by minimizing a loss function of the error between the 

model output and the data. 1 For instance, standard loss functions 

include the � p -losses defined for p ≥ 0 and all values of the error 

e ∈ R as 

� p (e ) = 

{
1 | e | > 0 , if p = 0 

| e | p , if p ∈ (0 , + ∞ ) . 
(1) 

Here, we concentrate on robust estimation in the presence of 

outliers and formulate the problem in terms of a saturated loss 

function � p,ε : R → R 

+ , defined for p ∈ {0, 1, 2} by 

∀ ε > 0 , � p,ε (e ) = 

{
1 | e | >ε, if p = 0 

( min (| e | , ε)) p , if p ∈ { 1 , 2 } . (2) 

Indeed, saturating the loss function limits the influence of outliers 

in the overall cost function to be minimized and thus on the re- 

sulting estimate. The statistical properties of these types of loss 

functions have been studied in the framework of redescending M- 

estimators, see e.g., [13] . For p = 0 , this approach is also related 

to bounded-error estimation. Indeed, we can equivalently view it 

as the maximization of the number of points for which the error 

is small and below the threshold ε. For p > 0, a similar viewpoint 

can be taken with the additional feature that the small errors are 

measured by a standard � p -loss function and further minimized. 

In this paper, we will focus the discussion on the corresponding 

optimization problem whose difficulty comes from the nonconvex- 

ity of the saturated losses. 

The computation of the argument e as a function of the model 

parameters and the precise form of the optimization problem de- 

pends on the specific problem considered and will be detailed next 

for regression and subspace estimation. 

2.1. Robust regression via saturated loss minimization 

The aim of linear regression is to estimate a linear model 

f (x ) = w 

T x from a data set { (x i , y i ) } N i =1 
of regression vectors x i ∈ 

R 

d and target outputs y i ∈ R . Here, we adopt an error-minimizing 

approach and more precisely focus on saturated loss functions as 

1 Note that we focus on problems where the dimensionality is significantly 

smaller than the number of data and where regularization of linear models might 

not be necessary. However, given the nature of the proposed approach, introducing 

a convex regularizer should not raise difficulties. 

defined above in order to confine the influence of outliers on the 

global cost. Let us define the index sets I = { 1 , . . . , N} and 

I 1 (w) = { i ∈ I : | y i − w 

T x i | < ε} , (3) 

before formally stating the robust regression problem we consider. 

Problem 1 ( � p , ε-linear regression) . Given a data set { (x i , y i ) } N i =1 
⊂

R 

d × R and a threshold ε > 0, find a global solution to 

min 

w∈ R d 
J p (w) , (4) 

where 

J p (w) = 

N ∑ 

i =1 

� p,ε (y i − w 

T x i ) (5) 

= 

{ 

N − | I 1 (w) | , if p = 0 ∑ 

i ∈ I 1 (w) 

| y i − w 

T x i | p + ε p (N − | I 1 (w) | ) , if p ∈ { 1 , 2 } . 

The formulation of Problem 1 emphasizes the connection be- 

tween saturated loss minimization and bounded-error estimation, 

i.e., the maximization of the number of points approximated with 

a bounded error that are here marked with index in I 1 ( w ). 

This also draws a connection with the classification problem of 

separating between points that are approximated with a bounded 

error by an optimal model and those that are not. In particular, 

given the solution to this classification problem, i.e., I 1 ( w 

∗) for 

some global minimizer w 

∗ of J p ( w ), a (perhaps different 2 ) global 

solution 

ˆ w can be recovered by solving Problem 1 under the con- 

straint I 1 (w) = I 1 (w 

∗) . Then, for p = 0 , J p ( w ) is a mere constant 

and it suffices to find a w such that | y i − w 

T x i | < ε for all i ∈ I 1 ( w 

∗) 

to satisfy the constraint. Conversely, for other values of p , the cost 

function J p ( w ) simplifies to a sum of error terms over a fixed set 

of points plus a constant. Hence, its minimization amounts to a 

standard regression problem with a non-saturated loss and we can 

compute ˆ w by solving 

ˆ w ∈ argmin 

w∈ R d 

⎧ ⎨ 

⎩ 

max 
i ∈ I 1 (w 

∗) 
| y i − w 

T x i | , if p = 0 ∑ 

i ∈ I 1 (w 

∗) 

| y i − w 

T x i | p , otherwise . (6) 

Such standard problems have polynomial complexities in O(d 2 N) 

for p = 2 and O(d 4 N 

4 ) for p ∈ {0, 1}. 

2.2. Robust subspace estimation via saturated loss minimization 

A d s -dimensional subspace of R 

d can be thought of as the col- 

umn space of a d × d s matrix B with orthonormal columns. In this 

case, the projection of a vector x ∈ R 

d onto the subspace can be 

written as BB 

T x and the corresponding scalar approximation error 

as ‖ (I − BB 

T ) x ‖ . 
Therefore, subspace estimation from a data set { x i } N i =1 

with a 

fixed subspace dimension equal to d s can be set as the search for 

a matrix B ∈ R 

d×d s such that B 

T B = I and that the approximation 

error is minimized over the data set. In the presence of outliers, 

a robust estimation can be obtained from the minimization of a 

saturated loss function (as defined in (2) ) of this approximation 

error. 

For any B ∈ R 

d×d s , we define the index set 

I 1 (B ) = { i ∈ I : ‖ (I − BB 

T ) x i ‖ < ε} , (7) 

in order to state the problem of robust subspace estimation as fol- 

lows. 

2 Problem 1 may have multiple global solutions, especially when p = 0 . 
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