
Pattern Recognition Letters 112 (2018) 353–360

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Emb e dding the node-to-node mappings to learn the Graph edit

distance parameters

Shaima Algabli, Francesc Serratosa

∗

Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona, Catalonia 43007, Spain

a r t i c l e i n f o

Article history:

Received 9 April 2018

Available online 20 August 2018

a b s t r a c t

This paper presents a learning method to automatically deduce the insertion, deletion and substitution

costs of the Graph edit distance. The method is based on embedding the ground-truth node-to-node

mappings into a Euclidean space and learning the edit costs through the hyperplane that splits the nodes

into mapped ones and non-mapped ones in this new space. In this way, the algorithm does not need to

compute any graph matching process, which is the main drawback of other methods due to its intrin-

sic exponential computational complexity. Nevertheless, our learning method has two main restrictions:

1) the insertion and deletion edit costs have to be constants; 2) the substitution edit costs have to be

represented as inner products of two vectors. One vector represents certain weights and the other vector

represents the distances between attributes. Experimental validation shows that the matching accuracy

of this method outperforms the current methods. Furthermore, there is a significant reduction in the

runtime in the learning process.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Attributed relational graphs are commonly used as abstract rep-

resentations for common structures such as documents, images or

chemical compounds, among others [1] . Nodes of graphs represent

local parts of the object and edges represent the relations between

these local parts. If we want to know the similarity between two

elements, we need to apply error-tolerant graph matching tech-

niques [3,4] .

Error-tolerant graph matching techniques are based on finding

a mapping between nodes so that both graphs look similar when

their nodes are mapped according to this node-to-node mapping.

One of the most used frameworks to concretise the error-tolerant

graph matching is through the Graph edit distance [5,6] . The main

idea is to define the difference between graphs as the amount of

distortion required to transform one graph into another through

substituting, deleting or inserting nodes and edges. To do so, some

penalty costs are defined for these edit operations. In this paper,

we present an automatic method to learn these costs. The aim is

to obtain these values automatically and therefore, in a recognition

process, any error-tolerant graph matching algorithm can be com-

puted having these costs as input parameters that have been found

trough an optimisation process.

∗ Corresponding author.

E-mail address: francesc.serratosa@urv.cat (F. Serratosa).

Moreover, in some object retrieval applications, in which ele-

ments are represented by graphs, the aim is to deduce which are

the most similar graphs, without the graphs being previously clas-

sified. In these cases, it is crucial the method for learning is de-

signed to learn the edit costs such that the best node-to-node

mapping between pairs of graphs is computed instead of max-

imising the classification ratio. This is the reason why the whole

process we present is dependent on a ground-truth node-to-node

matching. Recently, a graph database generator has been presented

that returns pairs of graphs with their ground truth correspon-

dence [7] .

Fig. 1 shows the basic scheme of our method. Given an ini-

tial database with some ground-truth node-to-node mappings, the

mapped and deleted nodes are embedded in a Euclidean space

and then a hyper plane is learned that splits both types of nodes

(mapped and non-mapped). Finally, the costs are deduced given

this hyper plane.

The outline of the paper is as follows. In the next section, we

review the state of the art related to learning the edit costs. In

Section 3 , we define attributed graphs and Graph edit distance. In

Section 4 , we present our learning strategy. In Section 5 , we show

the experimental validation and finally, we conclude the article in

Section 6 .

https://doi.org/10.1016/j.patrec.2018.08.026

0167-8655/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.patrec.2018.08.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.08.026&domain=pdf
mailto:francesc.serratosa@urv.cat
https://doi.org/10.1016/j.patrec.2018.08.026

354 S. Algabli, F. Serratosa / Pattern Recognition Letters 112 (2018) 353–360

Fig. 1. Basic scheme of our learning method.

2. Literature review

The aim of this paper is to present a new method to learn the

parameters of the GED. To our knowledge, only eight papers have

been published related to learning these parameters: [8–14] . An

important feature of these methods is the type of costs the learn-

ing algorithm obtains. The method in [8] obtains a self-organising

map and the method in [9] deduces a probability density function.

Therefore, in these cases, classical graph matching algorithms have

to be adapted to be applied to these learning methods since these

matching algorithms assume edit costs are real numbers. In [12] ,

the human (or another system) interacts with the automatically

obtained matching between nodes and imposes a new node-to-

node mapping. Then, the method considers this new mapping and

updates the whole correspondence between graph nodes.

Methods [10,11] and [13] assume nodes and edges have several

attributes (for instance features obtained by SIFT descriptors) and

these methods obtain a weight for each individual feature. How-

ever, they do not learn the insertion and deletion costs. There are

some graph databases [27] whose nodes and edges have only one

attribute or they are unattributed. In these cases, it makes no sense

to learn the substitution weights for each feature as in [10,11] and

[13] , but it is crucial to learn the best combinations of insertion

and deletion costs on nodes and edges as unique real numbers. In

these cases, the method presented in [14] is the only one in the

literature that learn the insertion and deletion edit cost on nodes

and edges as constants (a real number).

The method in [14] deduces these costs through minimising the

distance between the cost of a ground-truth matching and the cost

of the automatically deduced matching. The method has the draw-

back that the learning process is very slow since the matching be-

tween each pair of graphs has to be computed in each iteration of

the minimisation algorithm. Moreover, the algorithm depends on

some initial parameters.

In this paper, we present for the first time, a method that

learns, all at once, the insertion and deletion edit costs (as method

in [14] does) and also the weights on the substitution costs (as

methods in [10,11] and [13] do).

3. Graphs and Graph edit distance (GED)

In this section, we define attributed graphs, error tolerant graph

matching and the Graph Edit Distance (GED). Moreover, we show

a usual approximation of the GED.

Attributed graphs.

An attributed graph is defined as a quadruple G =

(�ν, �e , γv , γe) , where �v = { v a | a = 1 , . . . , n } is the set of

vertices and �e = { e ab | a, b ∈ 1 , . . . , n } is the set of edges. Function

γv : �v → �N
v assigns N attributes v a = [v a (1) , . . . , v a (N)] in the do-

main �v to each node. Similarly, γ e : �e → �e assigns M attributes

e ab = [e ab(1) , . . . , e ab(M)] in the domain �e to each edge. The order

of graph G is n .

The Star of a node v a , denotated S a , on an attributed graph G,

is another graph S a = (�S a
v , �

S a
e , γ

S a
v , γ S a

e) composed of the node

v a , the nodes connected to v a by an edge and these edges. For-

mally, �S a
v = { v a ∪ v b | e ab ∈ �e } and �S a

e = { e ab | e ab ∈ �e } . More-

over, γ S a
v (v b) = γv (v b) , ∀ v b ∈ �S a

v and γ S a
e (e ab) = γe (e ab) , ∀ e ab ∈

�S a
e . The order of star S a is n N a .

Error-tolerant graph matching

Let G

p = (�p
v , �

p
e , γ

p
v , γ

p
e) and G

q = (�q
v , �

q
e , γ

q
v , γ

q
e) be two

attributed graphs of initial order n and m . To allow maximum flex-

ibility in the matching process, graphs can be extended with null

nodes. We refer to null nodes of G

p and G

q by ˆ �p
v ⊆ �p

v and

ˆ �q
v ⊆

�q
v respectively. Let F be a set of all possible bijections between

the two node sets �p
v and �q

v . We define the non-existent or null

edges as ˆ �p
e ⊆ �p

e and

ˆ �q
e ⊆ �q

e . Correspondence f p,q : �p
v → �q

v
is bijective and assigns one node of G

p to only one node of G

q .

Graph Edit Distance between graphs (GED)

One of the most widely used methods to evaluate an error-

tolerant graph matching is the GED [1,2] . The dissimilarity is de-

fined as the minimum amount of required distortion to transform

one graph into the other. To this end, a number of distortions or

edit operations, consisting of insertion, deletion and substitution

of both nodes and edges are defined. Edit cost functions are in-

troduced to quantitatively evaluate the edit operations. The basic

idea is to assign a penalty cost to each edit operation according to

the amount of distortion that it introduces in the transformation.

Deletion (insertion) operations are transformed to assignments of

a non-null node (null node) of the first graph to a null node (non-

null node) of the second graph. Substitutions simply indicate node-

to-node assignments. Using this transformation, given two graphs

G

p and G

q , and a bijection between their nodes, f p, q , the graph edit

cost is:

If we consider f (v p a) = v q
i

and f (v p
b
) = v q

j
, which forces e

p

ab
to be

mapped to e
q
i j

, the EditCost is,

Edit Cost (G

p , G

q , f) =

∑

∀ v p a ∈ �p
v − ˆ �p

v s.t. v q
i
∈ �q

v − ˆ �q
v

C w v

(
v p a , v

q
i

)

+

∑

∀ e p
ab

∈ �p
e − ˆ �p

e s.t. e q
i j
∈ ̂ �q

e − ˆ �q
e

C w e

(
e p

ab
, e q

i j

)

+

∑

∀ v p a ∈ ̂ �p
v s.t. v q

i
∈ �q

v − ˆ �q
v

K v

+

∑

∀ e p
ab

∈ ̂ �p
e s.t. e q

i j
∈ �q

e − ˆ �q
e

K e

+

∑

∀ v p a ∈ �p
v − ˆ �p

v s.t. v q
i
∈ ̂ �q

v

K v

+

∑

∀ e p
ab

∈ �p
e − ˆ �p

e s.t. e q
i j
∈ ̂ �q

e

K e (1)

C Wv is a function that represents the cost of substituting node

v
p
a of G

p by node f p,q (v p a) of G

q . The same think occurs with

Download English Version:

https://daneshyari.com/en/article/11002883

Download Persian Version:

https://daneshyari.com/article/11002883

Daneshyari.com

https://daneshyari.com/en/article/11002883
https://daneshyari.com/article/11002883
https://daneshyari.com

