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a b s t r a c t

A system identification technique suitable for single degree of freedom (SDOF) and multi-
ple degree of freedom (MDOF) structural systems with either nonlinear elastic or inelastic/
hysteretic behavior is proposed in this paper. The method is a parametric modeling tech-
nique based on sparse regularization. The proposed framework is capable of discovering
the underlying governing equations of the system of interest from input-output data.
We build on the work of Brunton et al. (2016) by including functions that allow the discov-
ery of significant nonlinearities, and hystertic or inelastic behavior with permanent defor-
mation. We also present model selection using sparse regularization and cross validation
using Akaike criteria. We demonstrate through experimental validation that the technique
presented in this paper is applicable to a significantly broader class of problems. The effec-
tiveness of the proposed method is evaluated through numerical examples of a 2-story
nonlinear or inelastic building with a adjustable stiffness device. We also present experi-
mental validation using a unique nonlinear structural system that consists of a MDOF
structural system and a nonlinear negative stiffness device (NSD) to illustrate the signifi-
cant ability of the proposed framework. We successfully identify the following structural
systems from experimental data: a SDOF yielding frame without NSD; a SDOF yielding
frame with NSD; and a 3-DOF frame with NSD. The extracted sparse model also shows
potential for generalization.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse modeling and system identification techniques in structural engineering provide researchers and engineers with
ways to estimate the dynamic characteristics of real structural systems from input-output data. Forward mathematical mod-
eling (e.g. Finite Element Methods) based on physics is useful to simulate both static and dynamic behaviors. Through math-
ematical modeling, one can estimate the output behavior of the system being modeled for different inputs [1,2]. On the other
hand, inverse modeling and system identification techniques [3] are the process of developing a nonparametric or paramet-
ric model of a physical system from input-output data. It plays an important role since accurate forward modeling usually
requires detailed knowledge of the system, which is often difficult as only partial information of the system is initially
known. System identification can synthesize information from measurements and with prior assumptions can provide valu-
able insight into the physics of the actual system. System identification problems are often difficult due to the presence of
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nonlinearities and hysteresis/inelasticity. Factors such as the looseness of structural joints, amplitude dependent materials
and boundary conditions with variable stiffness constraints, etc. make behavior of practical structures nonlinear [2] and
complex.

Approaches typically used in the community of system identification fall into two categories [4,5]: (1) parametric meth-
ods; and (2) nonparametric methods. The first class of methods usually require a model structure and is parametrized by a
finite set of parameters. With the real measured data from structures, one can minimize the prediction error to update the
parameters. These methods are called prediction error methods (PEM). In PEM the final identified model structure is still in
the same class as initial model structure, but with updated parameters [6–11]. Usually, for dealing with the nonlinear
dynamic problems, initial model structure is assumed to be of a known structure — either bilinear or duffing or hysteretic.
Thus, a critical requirement of parametric methods is that assumptions regarding initial structure are needed. Nonparamet-
ric methods are purely based on input-output data mapping, with no prior knowledge of model structure. Impulse response
estimation in time domain or empirical transfer function estimate in the frequency domain are nonparametric methods.
Subspace identification techniques [12–14] are projection based methods, that use state space structure, Hankel matrix,
to estimate parameters. Statistical learning and sparse regression, using sparsity inducing regularization, are a class of meth-
ods that are more closer to the later then the former.

Another class of nonparametric identification methods, use measured input-output data, signal processing, statistical
learning and data mining techniques to learn and extract the embedded patterns from data. For instance, blind source sep-
aration based modal identification [15–17] and artificial neural network based nonlinear system identification techniques
[13,14] belong to this class of methods. The limitation of this methodology is that the extracted nonparametric model from
data, which is a functional mapping between inputs and outputs, has no physical meaning. Unfortunately, these techniques
rarely offer a straightforward physical insight into nonlinear dynamical systems.

Very recently, Brunton et al. [18] have proposed a new nonlinear identification method that discovers governing equation
and corresponding parameters using sparse regression to address this shortcoming of traditional source separation methods.
The newly proposed method seeks to extract the governing differential equations of the nonlinear dynamical system via
sparse regression and a dictionary of possible functions. The only assumption is that nonlinear dynamics is governed by a
few known functions, so the equations are sparse in the possible function space.

In this paper, we establish the framework of sparse identification for SDOF and MDOF nonlinear structural system with
significant hysteresis and permanent deformation. We augment the work of Brunton et al. [18,19] to include functions that
represent significant hysteresis or inelastic behavior. Thus we demonstrate that the augmented sparse technique presented
in this paper has significantly broader class of nonlinear problems that it can address. We deal with (1) two different types of
nonlinearity, which are commonly found in structural engineering: the first one is nonlinear elastic behavior and the second
one is hysteretic or inelastic behavior in real-world structures; (2) sparse identification with training and cross validation
using Akaike Information Criterion(AIC), which is implemented to optimize the choice of regularization parameters that
scale the optimal basis functions. In finding the optimal regression model, trade-off between accuracy and model complexity
is achieved; and (3) proposed framework is tested using real-world data from a unique system – a MDOF linear structures
with a nonlinear NSD [20–24] or Adaptive Stiffness Device (ATSD). NSD or ATSD introduces adaptive stiffness to the linear
elastic primary structure, such that the combined system of primary structure and NSD has nonlinear elastic behavior. Fig. 1
shows the conceptual force-displacement loops to illustrate the idea. We test the proposed framework in a SDOF yielding
structures for the cases of either with or without NSD. A three degree-of-freedom (3-DOF) structural system installed with
a NSD was tested under various seismic ground excitations [23]. These tests included inelastic behavior of the primary struc-
ture. With measured input-output data, the underlying governing differential equations and corresponding parameters are
discovered and phyiscal interpreation along with inelastic/hysteretic force-displacement loops, are presented using the pro-
posed method. We demonstrate by way of a number of numerical examples and experimental validation that sparse regu-
larization discovers the model structure and parameters that characterize the dynamical behavior – i.e. extract a physics
based parametric model.

Fig. 1. Conceptual force-displacement behavior of a negative stiffness device (NSD) engaging into a linear system to generate a nonlinear elastic system.
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