
SoftwareX 7 (2018) 263–272

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

SPGM: A Scalable PaleoGeomorphology Model
Rakib Hassan a,*,1, Michael Gurnis b, Simon E. Williams a, R. Dietmar Müller a

a EarthByte Group, School of Geosciences, University of Sydney, Sydney, New South Wales 2006, Australia
b Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

a r t i c l e i n f o

Article history:
Received 28 January 2016
Received in revised form 31 October 2017
Accepted 17 July 2018

Keywords:
Surface processes
Geomorphology
Paleogeomorphology
Morphodynamics
Landscape evolution model

a b s t r a c t

Numerical models of landscape evolution are playing an increasingly important role in providing an im-
proved understanding of geomorphic transport processes shaping Earth’s surface topography. Improving
theoretical underpinnings coupled with increasing computational capacity has led to the development
of several open source codes written in low-level languages. However, adapting these codes to new
functionality or introducing greater flexibility often requires significant recoding. Here we present a
multi-process, scalable, numerical model of geomorphological evolution, built with a modular structure
and geared toward seamless extensibility. We implement recent algorithmic advances that reduce the
computational cost of flow routing – a problem that typically scales quadratically with the number
of unknowns – to linear in time while allowing for parallel implementations of geomorphic transport
processes. Our scalability tests demonstrate that such parallelizations can achieve an order of magnitude
speedup on a typical desktop computer, making large-scale simulations more tractable.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.0
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-16-00021
Legal Code License GNU General Public License, version 2 (GPL-2.0)
Code versioning system used git
Software code languages, tools, and services used c++
Compilation requirements, operating environments & dependencies gcc compiler, scons build system
If available Link to developer documentation/manual dev-docs
Support email for questions rakib.hassan@ga.gov.au

1. Introduction

The interplay of a variety of physical processes acting over a
range of space and time scales is responsible for the evolution of
Earth’s surface topography. These physical processes broadly fall in
four categories: (i) river incision that leads to advective transport
of material over distances of up to several thousands of km, (ii)
diffusive processes such as soil creep and landslides that operate
over comparatively shorter length scales, (iii) large-scale surface
deformation arising from tectonic forces in the crust and litho-
sphere, and (iv) transient long-wavelength but small-amplitude

* Corresponding author.
E-mail address: rakib.hassan@ga.gov.au (R. Hassan).

1 Now at Geoscience Australia, GPO Box 378, Canberra 2601, ACT, Australia.

topographic variations arising from deep mantle convective forces
that operate over timescales of tens of millions of years [1]. In
recent decades, numerical models of geomorphological evolution
have become an important tool to facilitate a better understanding
of these coupled processes that sculpt surface topography [2–9].

Geomorphological (or landscape) evolution models have made
rapid advances in recent decades as a result of the increasing com-
putational capacity of computing hardware. However, the numeri-
cal resolution necessary to study geomorphological evolution over
continental scales, spanning tens of millions of years – particularly
aimed at better understanding the influence of long wavelength
but small amplitude dynamic topography – still poses significant
computational challenges. Wallis et al. [10] and Do et al. [11]
presented parallel flow routing algorithms based on the message-
passing-interface (MPI) on clusters and implementations on graph-
ics processing units (GPUs) have also been reported [12,13], which

https://doi.org/10.1016/j.softx.2018.07.005
2352-7110/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2018.07.005
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.07.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-16-00021
https://github.com/rh-downunder/spgm/blob/master/docs/dev-docs.pdf
mailto:rakib.hassan@ga.gov.au
mailto:rakib.hassan@ga.gov.au
https://doi.org/10.1016/j.softx.2018.07.005
http://creativecommons.org/licenses/by/4.0/


264 R. Hassan et al. / SoftwareX 7 (2018) 263–272

Fig. 1. Class diagrams showing the basic building blocks of SPGM.

show significant speedups. Braun andWillett [9] presented a par-
allelization approach based on open-multi-processing (OpenMP),
producing near-linear scalability on a shared-memory machine.
However, both MPI- and GPU-based parallelization strategies in-
volve increased development and debugging times and are likely
to compromise ease of code adaptability. We therefore adopt the
parallelization approach described in Braun and Willett [9] for its
simplicity and ease of implementation.

2. Software framework

SPGM has been implemented using C++ [14] and the basic
abstractions utilized are shown in Fig. 1. The Config class is re-
sponsible for parsing input configuration files and for providing
collaborating classes access to named parameters and parameter-
groups. Each of the physical processes implemented in SPGM –
which we interchangeably refer to as ‘modules’, e.g. Precipitation
– inherit from the abstract Process class. The Process class contains
a reference to the Config class and its sub-classes (blue rectangle in

Fig. 1) implement the Execute() function, which contains the core
numerical algorithm pertaining to a given physical process. The
ModelBuilder class instantiates a number of ‘Processes’ based on
an input configuration file and populates an instance of the Model
class with them. The SurfaceTopology classmanages the underlying
geometry of the computational mesh and recomputes drainage
networks at the beginning of each time step, as shown in the
program flowchart in Fig. 2.

In the following sections we describe the parsing of config-
uration files where general parameter values, as well as time-
series data for specific parameters can be specified. We also briefly
describe the algorithms used inmesh generation, flow-routing and
output generation.

2.1. Configuration files and parameter time series

We use simple, plain-text configuration files to list a number
of required parameters, followed by several groups of parameters
corresponding to physical processes modeled. Parameter values



Download	English	Version:

https://daneshyari.com/en/article/11002972

Download	Persian	Version:

https://daneshyari.com/article/11002972

Daneshyari.com

https://daneshyari.com/en/article/11002972
https://daneshyari.com/article/11002972
https://daneshyari.com/

