
SoftwareX 7 (2018) 273–280

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Decremental dynamic algorithm to trace mutually connected clusters
Deokjae Lee a, S. Hwang b, S. Choi c, B. Kahng a,*
a CCSS, CTP and Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
b Institute for Theoretical Physics, University of Cologne, Cologne, 50937, Germany
c Michigan Center for Theoretical Physics, Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109, USA

a r t i c l e i n f o

Article history:
Received 25 August 2017
Accepted 13 August 2018

Keywords:
Interdependent networks
Mutually connected clusters
Percolation
Hybrid phase transition
Euler tour tree

a b s t r a c t

The structure and dynamics of interdependent networks model catastrophic failures in complex systems
that are interdependent. Percolation transitions on these networks exhibit hybrid phase transitions,
which have significant practical implications for the early detection of large-scale failures. While the
computer simulation of the percolation transitions and related dynamics can effectively be reduced to the
computation of mutually connected clusters, such a computation is nontrivial, and several algorithms to
handle the task have been proposed. Here we introduce a C++ implementation of one of the algorithms.
This implementation uses intrusive data structures and thus provides a greater flexibility for applications
in which efficient memory access is critical. The data structures, which we provide as a part of the library,
are also useful for general percolation problems.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-17-00066
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used C++
Compilation requirements, operating environments &
dependencies

Any OS with a compiler supporting C++11 standard. A compile time dependency on
Boost.Optional (http://www.boost.org/).

If available Link to developer documentation/manual
Support email for questions lee.deokjae@gmail.com

1. Introduction

Catastrophic failures stemming from heavy mutual dependen-
cies between complex systems are critical problems in modern
society. For example, the mutual dependency between the power
grid and the computer network caused a large abrupt blackout in
Italy in 2003 [1]. Statistical physics of interdependent networks
has been considered the primary paradigm to understand such
phenomena since its recent introduction [1–5]. An important as-
pect of such catastrophic failures is that a small failure in a system
can propagate to a large fraction of the system with a low but

* Corresponding author.
E-mail address: bkahng@snu.ac.kr (B. Kahng).

not negligible probability. More precisely, the size distribution of
the total failures in a cascade follows a power law with an outlier
whose size is a finite fraction of the entire system [2,6,7]. Perco-
lation transitions in interdependent networks and the associated
avalanche dynamics capture the essence of this phenomenon.

A percolation transition in interdependent networks is a hy-
brid phase transition (HPT) [2,6]. This has significant theoretical
and practical implications. In HPTs, the order parameter exhibits
a discontinuity at the transition point, whereas the system also
shows critical phenomena in the vicinity of the transition point,
manifested by divergent physical quantities. Thus, they possess
the characteristics of both the first- and second-order phase tran-
sitions. HPTs have only been noticed recently by researchers and
thorough theoretical understanding of HPTs is an ongoing and ac-
tive area of research. In particular, for some practical applications,

https://doi.org/10.1016/j.softx.2018.08.002
2352-7110/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2018.08.002
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.08.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-17-00066
http://www.boost.org/
mailto:lee.deokjae@gmail.com
mailto:bkahng@snu.ac.kr
https://doi.org/10.1016/j.softx.2018.08.002
http://creativecommons.org/licenses/by/4.0/

274 D. Lee et al. / SoftwareX 7 (2018) 273–280

the divergent quantities may be used as precursors of catastrophic
failures [8,9,2]. Studying such quantities therefore gives access to
information that allows one to predict or perhaps even prevent
such failures, making it a significant attribute of the paradigm.

Using computer simulation to study the percolation and
avalanche dynamics of interdependent networks is a challenging
task. It requires a dynamic (online) algorithm to trace the size dis-
tribution of the mutually connected clusters, as defined in the fol-
lowing section, while nodes or edges are being removed from the
networks. Brute-force approaches based on previous algorithms
used for ordinary percolation problems are not efficient enough for
this process. Therefore, several algorithms have been proposed to
specifically tackle this problem [10–12]. In this paper,we introduce
an implementation of the algorithm developed in [11].

Besides its main purpose of dealing with interdependent net-
works, this implementation has some noteworthy properties that
are useful for general percolation problems. First of all, it provides
several efficient data structures, including an implementation of
a fully dynamic algorithm for graph connectivity (HDT algorithm)
developed in [13]. Here, the term connectivity denotes information
about the connected components of a graph, such as the exis-
tence of a path between any pair of nodes. For the incremental
percolation processes during which nodes or edges are added
gradually, the disjoint-set forest is a simple and very efficient
solution for simulations [14,15]. However, for the decremental
percolation processes during which nodes or edges are removed
gradually, an efficient solution is not trivial. The HDT algorithm is
a recent advance in the computer science discipline, and is directly
applicable to various decremental percolation processes.

Second, the implementations of the data structures are intru-
sive [16]. Intrusive data structures are widely used in the develop-
ment of performance- and resource-critical software such as op-
erating systems and games [17,18]. An intrusive implementation
of a data structure does not concern the allocation and release of
the memory to store the data. The users must allocate and release
the memory explicitly and provide hooks to be used by the im-
plementation (see Section 4.4). Whereas this choice imposes more
boilerplates in general, the explicit control of the memory comes
with the flexibility and opportunity to optimize memory access.
Being able to experiment and control the data cache miss rate is
crucial for improving runtime performance in current computer
architectures.

2. Percolation and avalanche process in interdependent net-
works

Let us consider two networks G1 = (V1, E1) and G2 = (V2, E2),
where V1 and V2 are the sets of nodes in each network, and E1 and
E2 are the sets of edges in each network. The mutual dependencies
between these networks are dictated by ‘special edges’ that link
a node of one network to a node of the other. We will refer to
them as ‘interdependency edges,’ and to the two networks as
‘interdependent networks’ [1]. Here, both the edges in a graph
and the interdependency edges between graphs are assumed to be
undirected.

To describe the interdependency structure, it is convenient to
introduce the set of nodes interdependent on a node n as I(n),
i.e., every nodem ∈ I(n) is linked to n by an interdependency edge.
Furthermore, by abuse of notation, we define I(W) =

⋃
n∈W I(n)

for any subsetW of either V1 or V2.
A mutually connected cluster (MCC) M is a pair (H1,H2) of

subgraphs His of Gis for i = 1, 2 with the following conditions,
given the subgraphs Hi = (Wi, Fi):

1. Each pair of nodes inWi is connected by at least one path in
Hi.

2. I(Wi) ̸= ∅ and I(W1) = W2 and I(W2) = I(W1).
3. M is maximal in the sense that any addition of nodes or

edges to Hi violates 1 or 2.

We refer to H1 and H2 as the projection of M on G1 and G2
respectively. Each forms a connected component in the respective
network. If |W1| + |W2| = O(|V1| + |V2|), M is called the giant
mutually connected cluster (GMCC). As a special case, if each node
has one and only one interdependency edge, each network is
partitioned by the set of all projections, and the projections of
any MCC to the two networks have the same size (number of
nodes). Otherwise, some nodes may not belong to any MCC, and
projections of one MCC to the two networks may have different
sizes.

To model the propagation of failures in mutually dependent
complex systems, let us assume that a node is functional if and
only if (a) it belongs to the giant cluster of its network, and (b)
each of its interdependent node also belongs to the giant cluster
of the respective network. This criterion of functionality defines a
connected component of functional nodes in each network, and it
coincides with the projection of the GMCC [1,19].1

We can model the failure of a node by deleting or separating
it from the GMCC. By the nature of the GMCC, all interdependent
neighbors of a failed node will simultaneously fail, causing some
nodes to be separated from the largest cluster of the network.
These separated nodes will cause additional failures, which in turn
trigger more failures, and so on. The process iterates until no more
nodes fail. This propagation of failures is called an avalanche. The
algorithm we present here is essentially a formalization of this
avalanche process for MCCs.

With the use of our fast implementation, one can efficiently
study percolation problems by tracing the size of the GMCC and
controlling some aspects of the networks, such as the mean de-
gree, number of initially failed nodes, degree distributions, and so
on [1,19,21,22,12]. Various properties of the avalanche dynamics,
for example themean size and the duration of the propagation, are
also quantities of interest [1,2,23,12,6].

3. Algorithm to trace MCCs dynamically

In Algorithm 1, we present a high-level description of the
algorithm that traces the MCCs while nodes or edges are being
deleted one by one. The description is slightly more general than
the description in [11], in the sense that in our current setting
we allow each node to have zero or multiple interdependencies.
To start, the algorithm requires every network to have only one
connected component. If not, we add auxiliary edges to make each
network connected, and they will later be removed by applying
the algorithm. The algorithm is essentially a process checking the
following two assertions when edges are deleted: (a) If two nodes
have no path in a network, then they cannot be in the same MCC.
(b) If a node has two interdependent nodes that are in different
connected components, then the node cannot belong to any MCC.
Hence, an efficientway tomaintain the information on the connec-
tivity during the process is crucial for ensuring the performance of
the algorithm.

For this purpose, the algorithm maintains a spanning forest
for each network. In contrast to the common usage of spanning
forests in which they represent the connected components of the
networks, we employ them here to store the projections of MCCs.
By construction, initially there is only oneMCC, and each spanning

1 One may assume that each node must have at least one interdependent node
that belongs to the giant cluster instead of assuming all interdependent nodes
belong to the giant cluster [20]. This leads to a definition of MCC different from
ours.

Download English Version:

https://daneshyari.com/en/article/11002973

Download Persian Version:

https://daneshyari.com/article/11002973

Daneshyari.com

https://daneshyari.com/en/article/11002973
https://daneshyari.com/article/11002973
https://daneshyari.com

