
SoftwareX 7 (2018) 304–308

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

pyEIT: A python based framework for Electrical Impedance
Tomography
Benyuan Liu, Bin Yang, Canhua Xu, Junying Xia, Meng Dai, Zhenyu Ji, Fusheng You,
Xiuzhen Dong, Xuetao Shi, Feng Fu ∗

Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, 710032, PR China

a r t i c l e i n f o

Article history:
Received 25 July 2018
Received in revised form19 September 2018
Accepted 19 September 2018

Keywords:
Electrical Impedance Tomography
Inverse problems
Finite element method
Unstructrual mesh

a b s t r a c t

Wepresent a Python-based, open source Electrical Impedance Tomography (EIT) library called pyEIT. It is a
multiplatform software released under the Apache License v2.0. pyEIT has a clean architecture and is well
documented. It implements state-of-the-art EIT imaging algorithms and is also capable of simple 2D/3D
meshing. pyEIT is written in Python. It accelerates the analysis of offline EIT data and can be incorporated
into clinical EIT applications. In this paper, we focus on illustrating the fundamental design principles of
pyEIT by using some intuitive examples about EIT forward computing and inverse solving.

© 2018 Published by Elsevier B.V.

Code metadata

Current code version 1.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2018_114
Legal Code License https://github.com/liubenyuan/pyEIT/blob/master/LICENSE.txt
Code versioning system used git
Software code languages, tools, and services used Python and the following Python packages: numpy, scipy, matplotlib, pandas
Compilation requirements, operating environments & dependencies Linux, Windows, Mac OS
If available Link to developer documentation/manual https://github.com/liubenyuan/pyEIT/tree/master/examples
Support email for questions byliu@fmmu.edu.cn

1. Motivation and significance

Electrical impedance tomography (EIT) is a low-cost,
non-invasive, radiation-free imaging method [1,2]. It is sensitive
to the changes of internal electrical properties, which has potential
in bedsidemonitoring during hospital care. Nowadays, lung EIT [3]
and brain EIT [4] are twomajor clinical research directions. In lung
EIT, the ventilation and perfusion distribution in the thorax are
imaged and evaluated in real-time [3]. In brain EIT, the pathological
intracranial changes, such as haemorrhage [5], ischemia [6] or
infarction [7], can be continuously monitored and imaged using
EIT. Most of the latest brain EIT researches are limited to phantom
models or animal studies. in-vivo brain EIT is hard. The size of
the skull is large, and the internal structure is complex. Moreover,
the high resistivity of the skull [8] and the high conductivity

∗ Corresponding author.
E-mail address: fengfu@fmmu.edu.cn (F. Fu).

of cerebrospinal fluid [9] create a shielding effect where only a
small amount of current applies on the cerebral. But brain EIT is
also life-saving. For example, the early identification of cerebral
injuries [10] is of great value to clinical surgeons. To advance
the development of brain EIT, we need to conduct large-scale 3D
finite element (FE) simulations, implement various sophisticated
EIT imaging algorithms and process a large amount of in-vivo data
in a closed loop.

In this paper, we propose a Python-based EIT simulation and
imaging framework called pyEIT. pyEIT ties the backend such as
Finite Element Method (FEM) simulation, EIT inverse solving and
imaging to the frontend applications. It may accelerate the evolu-
tion of in-vivo EIT studies.

Recently, we have used EIT in-vivo in cerebral imaging and
monitoring during total aortic arch replacement [10]. The imaging
speed of EIT is one frame per second. The data in [10] contain
42 subjects where the overall length is approximately 160 h. We
constructed a pipeline processing where data filtering, meshing,

https://doi.org/10.1016/j.softx.2018.09.005
2352-7110/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.softx.2018.09.005
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.09.005&domain=pdf
https://github.com/ElsevierSoftwareX/SOFTX_2018_114
https://github.com/liubenyuan/pyEIT/blob/master/LICENSE.txt
https://github.com/liubenyuan/pyEIT/tree/master/examples
mailto:byliu@fmmu.edu.cn
mailto:fengfu@fmmu.edu.cn
https://doi.org/10.1016/j.softx.2018.09.005


B. Liu et al. / SoftwareX 7 (2018) 304–308 305

Fig. 1. The software architecture of pyEIT. pyEIT consists of 3 parts: meshing, solving forward and inverse problem. Blue texts denote corresponding Python modules.

Fig. 2. A 16-electrode configuration EIT system for cerebral imaging.

EIT imaging, image postprocessing, feature extraction and clas-
sification are built upon pyEIT and other open source machine
learning packages.

The EIDORS toolkit [11] has been proposed for nearly 20 years
and it is widely used for developing and evaluating EIT algorithms.
pyEIT is less developed compared to EIDORS. Some features such
as Complete Electrode Model (CEM) and Total Variation (TV) reg-
ularization are missing in pyEIT. But, pyEIT is written in Python
and extensible. These features can be added as a plugin module.
Furthermore, EIDORS is based on MATLAB, which is essentially a
functional programming language and has weak Object Oriented
Programming (OOP) capability. In clinical EIT studies, most GUIs
are written in C++ or Python. The algorithms developed inMATLAB
need to be optimized and translated which consumes lots of work.
pyEIT has clean IO and is suited for rapid prototyping EIT systems
and benchmarking EIT reconstruction algorithms.

The architecture of pyEIT is introduced in Section 2. Illustrative
examples are given in Section 3. The impact of pyEIT is highlighted
in Section 4.

2. Software description

2.1. Software architecture

The architecture of pyeit is given in Fig. 1. The mesh module
is capable of partitioning Ω into triangles (2D) or tetrahedrons
(3D). pyEIT wraps around a linear fem module. fem solves the EIT
forward problem using a 4-electrode model, and the intermediate
variables such as boundary voltages v and the Jacobians J are
recorded by the module base. pyEIT implements state-of-the-art
EIT algorithms that support both dynamic EIT imaging (or time-
difference imaging) and static EIT imaging.

2.2. Software functionalities

The fem module solves the forward problem of EIT. The mathe-
matic model of EIT is formulated as a boundary value problem,

∇ · (σ∇u) = 0, in Ω

σ
∂u
∂n

⏐⏐⏐⏐
∂Ω

= g∫
∂Ω

u = 0

where Ω is the 2D or 3D domain to be imaged, and ∂Ω is the
boundary. In EIT, we inject a safe current at a fixed frequency
through a pair of electrodes attached to the boundary andmeasure
the voltage differences on remaining electrode pairs. Fig. 2 shows
a typical 16-electrode configuration. A frame of data, denoted by
v ∈ RM , is formed by rotating and repeating this process iteratively
over all 16 electrodes.

EIT imaging is an inverse problem, which reconstructs the con-
ductivities or the changes in conductivities inside the subject from
boundary voltages,

σ = min
σ ,Ω

∥v − f (Ω, σ )∥2
2 + λ∥σ − σ0∥

2
2 (1)

where σ0 is the initial distribution of the conductivities, a forward
operator f maps Ω and σ to boundary voltages v. By assuming a
perfect geometry (i.e., boundary shape and electrodes positions are
known a priori), the jacobians of σ is computed as,

J =
∂ f (σ )
∂σ

Gauss–Newton method is used to solve (1) iteratively,

σ(k+1)
= σ(k)

+ (JT J + λI)−1JT (v − f (σ(k))) (2)

Regularization terms can be incorporated into EIT easily by modi-
fying the norms in (1) accordingly.

The base module records the boundary voltages and the Ja-
cobians [12]. All the EIT imaging modules are built upon base.
Static EIT imaging calculates (2) iteratively. A dynamic EIT imaging
algorithm can image the changes of conductivities at two frames.
In pyEIT, typical dynamic EIT imaging methods such as back pro-
jection (bp), GREIT [13] and NOSER [14] are implemented.

3. Illustrative examples

3.1. Creating triangle meshes on a unit circle

pyEIT reimplements distmesh using Python. It also provides a
standard layered circle mesh. In the mesh module, create and



Download English Version:

https://daneshyari.com/en/article/11002978

Download Persian Version:

https://daneshyari.com/article/11002978

Daneshyari.com

https://daneshyari.com/en/article/11002978
https://daneshyari.com/article/11002978
https://daneshyari.com

